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Abstract and Motivation

Potential Impact

Inverse problems—in which we learn from data through the lens of models—arise Stein variational Newton (SVN)[6] i Projection into subspaces Projected SVN (pSVN)[5] Inverse and inference problems arise across numerous scientific and technological

Preliminary results: nonparametric maps
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We consider parametric and nonparametric transport methods for the solution of ~2.0- One technique we employ to achieve this is through low-rank approximations of
Bayesian inference problems. Given an intractable target/posterior distribution ‘1‘(.) — — — . : : . . T Hessians of the log posterior. However some Hessians may not admit a global low
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We.seek amap 1 : R — R t.hat pus.hes forward v, to v, denoted Tiv, = v;. Figure 2:Scalability of pSVN w.r.t. # dimensions, samples, and cores for a nonlinear problem. representat!ons requiring few forward model solves using for example énalytlca.l
This map renders challenging integration problems tractable: representations, hierarchical matrices, or product-convolution approximations, which
are currently active areas of research.

/ F(z) v (da) = / f o T(@) v, (da)

The map can be identified as the minimizer of the following variational problem 7 References

arg min Dk (Tiv,||v;) = argminE, [— log Tﬁ%ﬂ (1) We seek 72 C 7= (dim 72 = n,) s.t. [1] Noemi Petra, James Martin, Georg Stadler, and Omar Ghattas. A computational framework for
T T g . Z infinite-dimensional Bayesian inverse problems: Part Il. Stochastic Newton MCMC with application

e A parametric formulation [3] approximates the Knothe—Rosenblatt . T[C] €72, ceR™ st to ice sheet inverse problems. SIAM Journal on Scientific Computing, 36(4):A1525-A1555, 2014.

rearrangement within a space 7~ of lower triangular monotone maps: \Y [log p/Tﬁﬂ < Eo [2] Tiangang Cui, Kody J.H. Law, and Youssef M. Marzouk. Dimension-independent

[T(w)] . T(QZ . ) 9.7 > 0 Enrich likelihood-informed MCMC. Journal of Computational Physics, 304:109-137, 2016.
i = Li(Z1, ..., T 7 i .
) _ | | _7 o [3] Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini. Sampling via measure transport: an
° A nonparametric formulation can be obtained as the composition J\ /\ N\ introduction. In R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook of Uncertainty
T=S5o0---085, of S;i=1;+ Q; , @éA ®éA gA Stochastic volatility (SV) model (d = 36): Quantification. Springer, 2016.
: : © o 0 co 0606 ' i | i
where Q; belongs to a reproducing kernel Hilbert space. o9 QA oco /(;/\ oo /G;/\ Zosl = 1+ gb(Zn _ M) + 1, , 4] D Bigoni, J. ihe:, P. Cl;en, O. Gha;ttas, ?nld Y. I\/szlrzotu_k. A/daptlve co:stru;(t)lfg of transport maps
_ ‘ ¥ via sparse quadrature and sparse polynomial approximation. /n preparation, .
Both parametric and nonparametric formulations encounter difficulties as the ©.<09I017 9.8.0/01817 olejejele /\ Y, =enexp(Z,/2) ,n=11,...,34
di p. £ +h bl P. _ 0 coeee/ ©Cc0000/) ©000060) Mn Carl Aida five é ars; Grid [5] P. Chen, K. Wu, J. Chen, T. O’Leary-Roseberry, and O. Ghattas. Projected Stein variational
Imension of the probleém Increases. My mboffrltelarc()o) Ni)erOfmnctionimaﬂom(Xms) Newton: A fast and scalable Bayesian inference method in high dimensions. Submitted,

e The expectation above is approximated with a quadrature (deterministic or T T I s arXiv:1901.08659, 2019.

random) whose accuracy deteriorates with dimension. N - ‘ [6] G. Detommaso, T. Cui, A. Spantini, Y. Marzouk, and R. Scheichl. A Stein variational Newton
e Parametric maps can involve bases of exponentially increasing cardinality; this 0 i . Eo method. In Advances in Neural Information Processing Systems 31, pages 9187-9197. 2018.

can be mitigated with sparse approximations [4]. “ \\\ [7] MUQ: MIT Uncertainty Quantification Library. http://muq.mit.edu/home.
° No.nparametrlc m.aps can eXh.Iblt. mode coIIapse n t.he pu§hforward distribution, Slices of T%v; (Eop/iEndisparc iyl fiVEIR Eottomi)iasiic * o ains " oy ™ 18] U. Villa, N. Petra, and O. Ghattas. hIPPYlib: An extensible software framework for large-scale

which can be avoided by projecting the map to low-dimensional subspaces [5]. map improves through iterations 1, 2, and 10. iveies e, Jewial o Glian Semiee Salere 5 2018



http://muq.mit.edu/home

