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Abstract and Motivation
Inverse problems—in which we learn from data through the lens of models—arise
across numerous field of science, engineering, technology, and medicine, and in
particular our driving applications in advanced manufacturing and materials.
Bayesian inference provides a systematic statistical framework for learning from
data—e.g., fusing data with models and quantifying uncertainty in the results. Yet
inference in large-scale settings—incorporating large multimodal data sets, complex
physics-based models, and high-dimensional parameter spaces—remains an
enormous computational challenge. Moreover, inference is often only an inner
element of “outer loop” analyses such as optimization under uncertainty or optimal
experimental design, and hence must be performed repeatedly and quickly. While
advanced structure-exploiting sampling methods (e.g., Markov chain Monte Carlo
or sequential Monte Carlo methods) that significantly accelerate sampling have
been developed in recent years (e.g., [1, 2]), many large-scale complex problems
remain out of reach. To overcome these barriers, we are developing new scalable
inference strategies that replace sampling with optimization. In particular, we are
advancing variational inference methodologies based on transportation of measures,
which describe conditioning via the action of a nonlinear map. Transport maps offer
a rich and flexible representation of complex posterior distributions in non-Gaussian
settings, along with the ability to continuously trade off accuracy and
computational cost. We propose (1) adaptive (semi-)parametric approaches and (2)
completely nonparametric approaches for representing maps, each coupled with
suitable optimization methods. In both cases, our methods exploit low-dimensional
structure: low-dimensional data-informed subspaces, approximate independence, or
approximate conditional independence. We demonstrate inference across a
spectrum of problems, including inverse problems arising in PDEs, state-space
models, and statistical models in machine learning.

Approach
We consider parametric and nonparametric transport methods for the solution of
Bayesian inference problems. Given an intractable target/posterior distribution
νπ on Rd with unnormalized density π̃ and a tractable reference distribution νρ,
we seek a map T : Rd→ Rd that pushes forward νρ to νπ, denoted T]νρ = νπ.
This map renders challenging integration problems tractable:∫

f (x)νπ(dx) =

∫
f ◦ T (x)νρ(dx) .

The map can be identified as the minimizer of the following variational problem

argmin
T
DKL (T]νρ‖νπ) = argmin

T
Eρ
[
− log T ]π̃

]
(1)

• A parametric formulation [3] approximates the Knothe–Rosenblatt
rearrangement within a space T> of lower triangular monotone maps:

[T (x)]i = Ti(x1, . . . , xi) , ∂xiTi > 0 .

• A nonparametric formulation can be obtained as the composition

T = S1 ◦ · · · ◦ Sn of Si = Id +Qi ,

where Qi belongs to a reproducing kernel Hilbert space.

Both parametric and nonparametric formulations encounter difficulties as the
dimension of the problem increases:

• The expectation above is approximated with a quadrature (deterministic or
random) whose accuracy deteriorates with dimension.

• Parametric maps can involve bases of exponentially increasing cardinality; this
can be mitigated with sparse approximations [4].

• Nonparametric maps can exhibit “mode collapse” in the pushforward distribution,
which can be avoided by projecting the map to low-dimensional subspaces [5].

Preliminary results: nonparametric maps
Stein variational Newton (SVN)[6]
For an ansatz representation

Si(x) =
N∑
n=1

cnkn(x),

we have the Newton system

Hxc = −gx,
with the gradient and Hessian
gxm = Eµi[−∇x log π̃ km +∇xkm]

Hxmn = Eµi[−∇2
x log π̃ kmkn +∇xkn(∇xkm)>].

Projection into subspaces

For a data-informed subspace

Ψ = (ψ1, . . . , ψr),

we project the parameter as

x = xr + x⊥, xr = ΨΨ>x.

By w := Ψ>x, we have

∇w log π̃ = Ψ>∇x log π̃
∇2
w log π̃ = Ψ>∇2

x log π̃Ψ.

Projected SVN (pSVN)[5]
For an ansatz representation

Si(w) =

N∑
n=1

cnkn(w),

we have the Newton system

Hwc = −gw,
with the gradient and Hessian
gwm = Eµi[−∇w log π̃ km +∇wkm]

Hwmn = Eµi[−∇2
w log π̃ kmkn +∇wkn(∇wkm)>].
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Figure 1:Prior samples (left) and posterior samples by SVN (middle) for a 2-D problem. Comparison
of convergence/accuracy of SVGD, SVN, and pSVN for a 1025-D linear problem projected into 5-D.
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Figure 2:Scalability of pSVN w.r.t. # dimensions, samples, and cores for a nonlinear problem.

Preliminary results: adaptive semi-parametric maps

We seek T •> ⊂ T> (dim T •> = n•) s.t.

∃ T [c] ∈ T •> , c ∈ Rn• s.t.

V
[
log ρ/T ]π

]
< ε•
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Slices of T ]νπ (top) and sparsity of ∇xT (bottom) as the

map improves through iterations 1, 2, and 10.

Stochastic volatility (SV) model (d = 36):

Zn+1 = µ + φ(Zn − µ) + ηn ,

Yn = εn exp(Zn/2) , n = [1, . . . , 34]
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Potential Impact

Inverse and inference problems arise across numerous scientific and technological
areas, and address the foundational problem of how we learn from data through the
lens of models. In particular, numerous problems of DOE interest fall in this
category. For example, in the case of PDEs or ODEs, we can infer: subsurface
permeability and contaminant concentrations from well measurements; ice basal
boundary conditions from satellite observations of surface velocities; state
estimation of oceans from altimetry and ocean probes; material microstructural
properties from X-ray scattering data; as-built interior geometry of accelerators
from measured EM fields; neutron star merger dynamics from measurements of
gravitational fields; biomolecular potentials from dynamics; combustion reaction
mechanisms from species concentrations; and so on. Beyond differential equation
models, machine learning of graph-based, kernel-based, agent-based, Gaussian
process-based, or neural network-based models is fundamentally an inference
problem. In all of these, a Bayesian framework is attractive since it is capable of
rigorously accosting for uncertainties, given uncertainties in observations,
parameters, and the models themselves. The methods we are developing offer the
hope of tackling large-scale instances of these, and many more, problems. To make
our developments more accessible, they are being incorporated into our open source
libraries for inverse problems and uncertainty quantification [7, 8].

Synergy

As mentioned above, the methods developed here are applicable to a broad
spectrum of model-based inference-from-data problems. In many cases, we seek to
infer infinite-dimensional fields, such as initial conditions, boundary conditions,
sources, heterogeneous material properties, or geometry. Upon discretization, these
lead to very high dimensional parameter spaces. The scalability of the methods we
are developing relies of exploiting the underlying intrinsic low-dimensional structure.
One technique we employ to achieve this is through low-rank approximations of
Hessians of the log posterior. However some Hessians may not admit a global low
rank structure. There is an opportunity to develop other compressed
representations—requiring few forward model solves—using for example analytical
representations, hierarchical matrices, or product-convolution approximations, which
are currently active areas of research.
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