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AEOLUS: Advances in Experimental Design, Optimal Control,
and Learning for Uncertain Complex Systems

Summary of Center Research

1. Introduction

The AEOLUS Center is dedicated to developing a unified optimization-under-uncertainty framework for
(1) learning predictive models from data and (2) optimizing experiments, processes, and designs, all in
the context of complex, uncertain energy systems. The AEOLUS center will address the critical need for
a principled, rigorous, scalable, and structure-exploiting capability for exploring parameter and decision
spaces of complex forward simulation models.

This report summarizes key progress in the first year of AEOLUS research. We first describe our
efforts in multiscale modeling for advanced manufacturing and materials, including the development
of a rich set of testbed problems (§2) and quantification of their model inadequacy (§3). We present
several complementary approaches being pursued for development of low-dimensional and reduced-order
models, with a particular focus on learning models from data (§4). We then highlight our progress in
developing new methods to achieve optimal experimental design (§5,§6), uncertainty quantification in
support of experimental design §7), and optimal design under uncertainty (§8).

2. Multiscale modeling for advanced manufacturing and materials

AEOLUS research is developing multiscale modeling capabilities and testbed problems in additive man-
ufacturing and materials self-assembly. These testbed problems involve a complex interplay between
multiple physical phenomena at multiple scales, and they embody the mathematical challenges that
are the driving focus of the AEOLUS center: learning models from data and optimal control under
uncertainty.

2.1. Phase-Field Models of Phase Change in Complex Systems

We are studying and developing models of phase change in polymeric materials, a subject at the center
of modern methods of nanomanufacturing, and of related phenomena arising in the evolution of micro-
environments in biological systems, particularly tumor growth in mammals. The Direct-Self-Assembly
(DSA) of block copolymers describes the spontaneous phase change in multiphase materials, such as
block copolymers, that can result in distinct patterns of monomer species with periodic structures of
nanoscale dimension, some as small as 5 nm. These patterns guide lithography processes that produce
templates for the fabrication of nanoscale devices that are very important in semiconductor technology.
Similarly, phase-field models of vascular tumor growth share many features of the DSA models of block
copolymers, although their overall complexity can be much greater. Among key challenges in these
studies are the development and rigorous analysis of mathematical and computational models of phase
change in polymers, the resolution of inverse problems whereby model parameters and initial conditions
are determined that fit observational data or data stemming from higher-fidelity “ground truth” models,
optimal control/design strategies to manipulate boundary conditions and environments to yield desirable
morphologies, i.e. patterns in equilibrium states, and the development of computer codes and methods
that produce accurate computer simulations based on these models.

We have developed implementations of the numerical solution of finite element approximations of
continuum (phenomenological) models of phase change in copolymers, both Cahn-Hilliard (CH) models
as well as nonlocal CH models following the Ohta-Kawasaki density functional theory. Such energy
functional enables capturing typical possible morphologies of copolymers, as shown in Fig. 1. Rather
extensive numerical experiments have been performed on local and nonlocal CH models, treating the
model as one of gradient flow or, alternatively, treating the problem of determining equilibrium states as
a nonconvex optimization problem, directly minimizing the free energy. The nonlocal component of the
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(a) (b) (c) (d)

Figure 1: Morphologies of block-copolymers from the steady state finite element solutions of the nonlocal Cahn-Hilliard
model: (a) macro-phase seperation; (b) lamellar; (c) cylinders; (d) spheres.

energy is introduced via a PDE constraint, along with a global mass conservation constraint, and the
constrained optimization (non-convex due to the double well potential) is solved via Newton iteration on
the KKT conditions, with Gauss-Newton globalization. This direct energy minimization method rapidly
determines the final morphology for the nonlocal CH problem. Fig. 2 shows 2D simulations of block
copolymer final morphology using the two solution strategies, indicating a 40X speedup using the new
Newton method.

(a) (b) (c) (d)

Figure 2: Equilibrium state of nonlocal Cahn-Hilliard equation: (a) gradient flow solution taking 3115 steps to reach
equilibrium with a final energy of 1.874. (b) new Newton method based on direct minimization of nonconvex free energy
taking 80 iterations to reach equilibrium with a final energy of 1.873. Morphology of a block copolymer simulated using
models based on SCFT in (c) 2D and (d) 3D.

We have also just completed a detailed study of Self-Consistent Field Theory (SCFT) of block
copolymers. It is known that the nonlocal Ohta-Kawasaki model can be derived from SCFT under suit-
able assumptions; SCFT models can be used to provide training data to calibrate the phenomenological
parameters in the nonlocal CH model. We have developed preliminary finite element codes based on
SCFT and have obtained numerical solutions of representative examples of 2D and 3D morphologies of
block copolymers; see Fig. 2. At this juncture, the computation time required for numerical solutions
based on the SCFT analysis is very lengthy compared to that of CH models and may generally be
too expensive computationally to be competitive. Further work will be done on ways to make these
simulations run more efficiently.

In future work, we intend to implement Bayesian approaches for parameter estimation and model
validation developed under the learning components of AEOLUS for the nonlocal CH models using syn-
thetic data furnished by higher fidelity SCFT approximations and imaging data provided by Brookhaven
National Laboratory. The resulting inferred CH phase-field models, with quantified uncertainties in pa-
rameters, will then provide a basis for optimization of directed self-assembly processes by optimal control
of substrate chemical boundary conditions—a challenging optimization under uncertainty problem.
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2.2. Reduced-order modeling multiscale testbed problems with moving interfaces

Our driving applications comprise physical and chemical processes that result in rapidly evolving inter-
faces. The time evolution of these interfaces is strongly coupled to bulk properties of several fields. This
strong coupling manifests mathematically as stiffness and ill-conditioning, which in turn dictate the use
of high-resolution both in space and time. At each time step, nonlocal interactions need to be resolved,
typically through the solution of elliptic PDEs in evolving domains with variable coefficients. As a re-
sult, simulations for such problems are expensive and present a major computational barrier for higher
level tasks like parameter estimation, design, and uncertainty quantification. Our overarching goal is to
construct reduced order models that can be used to dramatically accelerate the forward problem.

The first driving application we consider for constructing reduced order models is additive manu-
facturing. In this problem, the interface between different microstructures (composition, phase) evolves
as a function of the temperature, composition, geometry, and interfacial energies. Solidification and
crystal growth result in a microstructure that controls the bulk properties and the functionality of the
material. For our initial investigations, we have chosen a three-species, phase-field model that is a good
approximation of a more complex multispecies model for the microstructure evolution of a nickel-base
superalloy during laser powder bed fusion [19]. Our model includes temperature, chemical potential,
and phase. The phase-field tracks the evolution of the solid-liquid interface, and can reproduce classical
features of dendritic evolution, for example the formation of primary and secondary arms.

Figure 3: Illustration of a multiscale simulation to track the
solidification of a material with microstructure. The top ge-
ometry indicates the macroscale model in which we solve a
variable coefficient heat equation with source term and heat
conductivity that depend on the microstructure. In the bot-
tom two rows of figures, the top row depicts the phase field
function (white is the solid phase and black is the liquid phase)
at different points of the macro domain. The bottom figure
depicts the chemical potential.

Its mathematical formulation involves a set of
nonlinear parabolic equations for the three species
evolution, with elliptic operators involving nonlin-
ear, inhomogeneous, and anisotropic coefficients.
The formulation couples two time-dependent dif-
fusion equations (temperature and chemical po-
tential) to a time-dependent reaction-diffusion
equation (phase field). Although there have been
several studies that consider a single dendrite, we
consider a multiscale setup in which we can simul-
taneously consider 100s to thousands of dendrites
and simulate the properties of the bulk structure
as depicted in Figure 3.

Our second application for reduced-order
models concerns the rheology of complex flu-
ids, that is, fluid suspensions with a large number
of deformable particles. The suspension dynam-
ics is governed by long-range hydrodynamic in-
teractions between the deformable particles and
the elastic energy of the particle-fluid interface,
e.g., due to bending and tension. We have chosen
this application because we have an existing inte-
gral equation solver that can simulate the forward
problem with spectral accuracy. The suspension evolution is governed by quasi-static Stokes equations
with jump interface conditions, where the jump is related to the derivatives of the elastic energy of the
interface. Due to highly nonlinear fluid-structure interaction dynamics, the moving interfaces, and the
multiple scales, numerical simulations of such flows are challenging and expensive.

2.3. Nonlocal Cahn-Hilliard models for phase separation with sharp interfaces
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Cahn-Hilliard partial differential equation models are in common use for
modeling problems where different substances are separated by regularized
interfaces, that is, diffuse interfaces that approximate sharp physical inter-
faces. The thickness of the diffuse interface is proportional to a regularizing
parameter so it cannot be reduced via grid-size reduction; see the top figure.
On the other hand, the use of nonlocal Cahn-Hilliard models can result in
sharp interfaces so that if, for example, continuous finite element discretiza-
tions are used, the thickness of the interface is of order of the grid size (see
the bottom figure) and if discontinuous FEMs are used, the interface can
be totally sharp. Thus, we propose a nonlocal variant of the Cahn-Hilliard
interface model with a non-smooth potential of double-well obstacle type.
We have considered different variants of the nonlocal contributions in the
model such as nonlocal operators and nonlocal boundary conditions. In con-
trast to the local setting, the proposed model allows for sharp interfaces.
Here, the choice of the obstacle potential plays an important role in our analysis, because it guarantees
the strict separation of the substance into pure phases for nontrivial interactions. Mathematically, this
introduces additional inequality constraints that, in a weak form, lead to a coupled system of variational
inequalities, which at each time instance can be restated as a constrained optimization problem. We
analyze a discretization of the problem in space and time based on finite elements and implicit-explicit
time stepping methods that can be realized efficiently. We provide numerical experiments to support
our theoretical findings in one and two spatial dimensions.

3. Model inadequacy

Work on physics-based model inadequacy representations for complex mathematical models has focused
on two areas during the past year. First, in continuation of previous work, an inadequacy formulation
is being developed for a model of scalar transport through a heterogeneous porous medium. Second,
these ideas are being extended to develop an inadequacy representation for the non-local Cahn-Hilliard
model based on self-consistent field theory (SCFT) in the context of the block co-polymer application.
In both problems, we aim to exploit the existence of a hierarchy of physical modelss to build realistic
inadequacy representations for low fidelity physical models.

Porous Media Transport through heterogeneous porous media depends on dynamics across a wide
range of scales, the smallest of which can neither be resolved nor observed. For this reason homogenized
models of mean transport neglect the smallest scales, though they are known to affect macroscale
dynamics. Similar issues arise in multiscale material models and many other physical modeling domains,
due to limited computational resources.

Thus, work has focused on the process by which an inadequacy representation can be formulated
and informed for problems with unresolved microscale dynamics. To represent the model hierarchy in
the porous media flow application, two simplified models were developed: a higher-fidelity model that
resolves all relevant scales, and a lower-fidelity model that does not resolve the smallest scales. Both
models are much simpler than would be required for a practical problem, but the nature of the inade-
quacy in the low-fidelity model is the same as those used in practice. The inadequacy representation
is then intended to account for the uncertainty introduced in the low-fidelity model by modeling the
effects of the small scales. Specifically, a stochastic operator is added to the low-fidelity model evolution
equations at the point where the effects of the microscale dynamics are modeled. An important part of
inadequacy model development is identifying constraints that prior knowledge places on the representa-
tion. In this case, linearity and spatial shift invariance of the governing equations lead to requirements
that the operator be linear, enabling its characterization by its eigendecomposition, and requiring its
eigenfunctions to be the Fourier modes, respectively. Since the eigenfunctions are fixed, its eigenvalues
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must be the source of stochasticity in the representation.
In previous inadequacy treatments, the form of the distribution of the eigenvalues of the op-

erator would be assumed, and the hyperparameters of assumed form would then be inferred.
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Figure 4: Correlations between the real and imaginary
parts, as well as correlations across wavenumber are sig-
nificant.

This year work has instead focused on a using direct
simulation of the high-fidelity model to compute sam-
ples from the eigenvalues’ distribution. Preliminary
results of this sampling indicate high levels of corre-
lation between the eigenvalues, especially at higher
frequencies, as shown in Figure 4.

Sensitivity analysis studies were performed to dis-
cover which aspects of the eigenvalues’ distributions
are most important for prediction. Using summary
statistics computed from eigenvalue samples, different
distributions were constructed that, e.g. included in-
formation about correlations without perfectly repro-
ducing marginal distributions, or reproduced marginal
distributions without accounting for correlations. The
different distributions were then forward propagated
to generate sample evolutions of the transported con-
centration field. As shown in Figure 5, accounting for
correlations leads to evolutions that better maintain positivity of concentrations, as is physically required.
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Sample concentrations, t=0.50, accounting for correlation

Figure 5: The distribution focused on characterizing the marginal distributions of the eigenvalues (left) produces nonphysi-
cal concentration fields with strong oscillations in their tails. The distribution that focused on characterizing the correlation
structure produced much more physical evolutions.

Block Co-Polymer As in the porous media problem, in the block co-polymer application, a hierarchy
of physical models is available. Of these models, one of the most computationally tractable is the
non-local Cahn-Hilliard-like model, which describes the macroscopic monomer density in terms of a
scalar PDE. As shown by Choksi and Ren [5], this model can be derived from a higher-fidelity model—
a self-consistent mean field theory [14]—by invoking a number of simplifying assumptions. These
assumptions include linearization about a high temperature condition and use of long- and short-wave
approximations to analytically compute an inverse Fourier transform. The result of these assumptions is
that the relationship between the density and the potential is greatly simplified, such that the potential
can be eliminated analytically. To derive an appropriate model inadequacy representation, we are working
to develop random perturbations of the assumptions that are consistent with SCFT while maintaining
the tractability of the non-local Cahn-Hilliard-like model.
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4. Learning from data: Low-dimensional modeling and reduced models

AEOLUS is pursuing several different directions to tackle the challenging task of deriving low-dimensional
models and reduced-order models for our target multiscale problems in additive manufacturing and
materials self-assembly.

4.1. Lift & Learn: Learning low-dimensional models for an additive manufacturing solidification
process

One of the applications under development as part of the Exascale Computing Project (ECP) is ExaAM,
the Exascale Additive Manufacturing project, which is developing a set of simulation capabilities for
modeling additive manufacturing processes, with emphasis on laser and electron beam powder bed
fusion. One of the key physical phenomena is solidification, for which phase field provides a mature,
well-posed formulation. However, it is extremely expensive computationally because of the stringent
spatial resolution requirements associated with the use of a diffuse interface especially in the presence of
high curvatures and/or in the presence of solute diffusion. In addition, there are several model parameters
whose determination in the context of the phase field formulation are tied to the mathematical description
of the diffuse interface and therefore pose restrictions on the temporal and spatial resolution required
for model convergence and relevance to the behavior of real material systems. Therefore, developing
reduced-order models (ROMs) for phase field simulations of solidification is an attractive test bed for
AEOLUS.

The mechanical properties of additively manufactured parts are influenced by the solidification mi-
crostructure, and in order to be able to build parts with desired properties one must be able to control the
microstructure (e.g., size and orientation of the dendrites, primary and secondary dendritic arm spacing,
solute concentration, etc.). Forward simulation models that have the required spatial resolution to accu-
rately capture the solidification structure of an additively manufactured part have computational costs
that are prohibitively high for achieving control. In AEOLUS, we are pursuing reduced-order modeling
as a critical enabler for achieving models that are sufficiently accurate and at the same time sufficiently
efficient to achieve control. Our target problems pose several challenges for existing model reduction
methods. For example, our initial testbed model couples phase field simulation of the solidification with
the heat equation. For this mdoel, the character of the temperature and order parameter state solutions
changes drastically throughout a given simulation (as the solidification front progresses) and the forward
simulation models have highly nonlinear dependence on system parameters. Classical methods such as
the proper orthogonal decomposition (POD) that seek straightforward approximations of the state in a
linear subspace require many modes to achieve accuracy in a problem such as this one, rendering the
resulting POD reduced models inefficient.

We have developed a projection-based ROM for a one-dimensional model problem of the testbed
described in §2.2. This testbed problem solves a phase field simulation of the solidification coupled
with the heat equation. Written in their native form, the governing equations solve for the spatial and
time evolution of the temperature field T (x, t) and the order parameter φ(x, t). The order parameter
φ denotes the phase field state, where φ = 0 and φ = 1 correspond to the liquid and solid states,
respectively. These two coupled nonlinear equations can be transformed to a set of cubic differential
algebraic equations (DAEs), with the introduction of six auxiliary states. The resulting lifted DAE system
then has eight unknown variables (compared to two for the original system), but the cubic structure of
the lifted formulation is desirable because it admits an efficient ROM that does not require additional
approximations of the nonlinear terms (i.e., it avoids so-called “hyper-reduction” which is used in existing
ROM methods but often fails for multiscale problems). We call this reduced-order modeling approach
“Lift & Learn.”

We do not discretize the lifted PDE system, but rather collect snapshots of the original system
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Figure 6: A comparison of full-order model (FOM) and ROM predictions of temperature and order parameter. The FOM
and ROM have 2002 and 23 degrees of freedom, respectively.

simulation and then apply the lifting transformations to the snapshots. This gives us a set of snapshots
representing temperature T , order parameter φ, and the six auxiliary variables. From these snapshots, we
compute the POD basis and then learn the ROM operator coefficients (linear, quadratic and cubic terms)
from projected snapshot data, using a least-squares operator inference method. Figure 6 compares ROM
predictions with full model predictions for one dimensional solidification with initial temperature field
T (x, 0) = 0.4 and initial phase field profile defined by φ(x, 0) = 0.5 cos (πx) + 0.5. The dimension
of the POD basis is selected by retaining 99.9% of the cumulative energy of the POD singular values.
This results in a ROM dimension of 23: seven modes for differential equations and 16 modes for the
algebraic equations.

The UT and ORNL teams are working closely together to develop these reduced-order modeling
capabilities in the context of ExaAM application targets. In order to make the initial demonstra-
tion more computationally tractable, we have worked to reduce the ExaAM solidification component
(MEUMAPPS-SL) for simpler materials (e.g. pure metals). In FY20 we will demonstrate the full “lift
and learn” process for the initial problem and begin designing more realistic challenge problems as next
steps. Ultimately we plan to leverage the ROMs developed within AEOLUS in ExaAM within design
optimization loops.

4.2. Reduced-order models for multiscale PDE problems with moving interfaces

We have combined novel discretization schemes with machine-learning in order to construct an effective
reduced model, and we have extended this reduced model construction methodology to numerical
homogenization algorithms. Both methods are related to microstructure evolution of systems governed
by multispecies nonlinear PDEs.

Integration of operator-splitting and machine learning. The frequent solution of large linear
systems (typically discretizations that attempt to capture nonlocal interactions) creates a major com-
putational bottleneck. Using our complex fluid simulation framework, we have proposed a machine
learning augmented reduced model for such problems. The basic idea is to devise an operator-splitting
scheme that allows the construction a high-dimensional approximation for expensive interface operators.
We have reported results this method in [16]. Our model replaces expensive nonlinear operators with
regression functions. Given the physical parameters of the interface, our model generalizes to arbi-
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Figure 7: Time evolution of the phase field function of a single dendrite using a three-species PDE model (temperature,
chemical potential, and phase field).

trary geometries and boundary conditions without retraining the regression approximation. Our reduced
model simulations are qualitatively as accurate as and approximately an order of magnitude faster than
the simulations performed with the numerical scheme using the same number of degrees of freedom as
the reduced model. The important features of our scheme are that (1) it generalizes to dynamics that
are completely different than the ones used in the training phase; (2) it is tightly integrated with the
forward problem. Our method is not a black box approximation and the reduced model still uses several
components of the PDE forward solver.

Multiscale phase-field models for crystal growth. We have completed the implementation of
the homogenization scheme described in [13] in one and two dimensions. That scheme significantly
accelerates dendrite growth simulations since it doesn’t require full revolution of the forward problem.
However, this scheme two-way couples the macroscale and microscale and ends up requiring hundreds of
single-dendrite simulations to capture the growth dynamics (see Figure 3 for the full model dynamics and
Figure 7 for the single dendrite dynamics). As a result it is still very expensive, even in 2D. To address
this cost, we are considering an adaptive scheme for the macro-micro model in which we don’t track the
evolution of all the dendrites but only the ones for which the dynamics are sufficiently different some
default representative dynamics. This requires methods for defining similarity between dendrites and
their state, methods to interpolate between different dendrite shapes, and robust error criteria when we
do such regressions. Preliminary results using a metric that tracks the temperature history of a dendrite
give less than one per cent error when the latent heat and initial shapes don’t vary significantly in the
macro domain. But if there are significant coarse-scale variations in properties that control growth (e.g.,
latent heat) this approach can lead to 50% or higher errors. We are currently examining algorithms to
better control this error while speeding up the overall computations. In a different research thread (that
uses the same model), we have also start working on a optimization problem in which we control the
heat deposition in order to optimize the final microstructure.

4.3. Learning optimal reduced models from scientific data in advanced manufacturing and
materials applications

In this section we summarize our recent accomplishments towards learning optimal reduced models from
scientific data in advanced manufacturing and materials applications, described in our recent efforts
[8, 9, 20]. In addition, we have also developed several other related efforts whose details are described
in [6, 7, 11, 12, 15, 18, 23, 24, 25].

The Natural Greedy Algorithm (NGA) for reduced bases in Banach spaces. We recently
introduced and analyzed a novel reduced basis approach, used to construct an approximating sub-
space for a given set of data. Our technique, which we call the Natural Greedy Algorithm (NGA),
is based on a recursive approach for iteratively constructing such subspaces, and coincides with
the standard, and the extensively studied, Orthogonal Greedy Algorithm (OGA) in a Hilbert space.
However, for a given set of data, the NGA is straightforward to implement and overcomes the
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Figure 9: From left to right: feed forward layer, residual layer, proposed implicit residual layer.

explosion in computational effort introduced by the OGA when applied in a general Banach space,
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Figure 8: The average quality of various re-
duction techniques ranging from m = 3 to
m = 30 reduced bases.

as we utilize an entirely new technique for projecting onto the
appropriate subspaces. We rigorously analyzed the NGA, and
demonstrate that it’s theoretical performance is similar to the
OGA, while the realization of the former results in significant
computational savings through a substantially improved numer-
ical procedure. Furthermore, we show that the empirical inter-
polation method (EIM) can be viewed as a special case of the
NGA. Finally, several numerical examples are used to illustrate
the advantages of our NGA compared with other greedy algo-
rithms and additional popular reduced bases methods, including
EIM and proper orthogonal decomposition (POD). For example,
consider the following parametric family given by

F(x, µ1, µ2) = exp(x+ 2µ1 + 3µ2)

(
exp

(
− π

∣∣∣x− µ1

2

∣∣∣ ) arcsin
(
sin

(
2π exp(µ1)x

))
+ exp

(
− π

∣∣∣x+
µ2

2

∣∣∣ ) arcsin
(
sin

(
exp(π − µ2)x

)))
,

where (µ1, µ2) ∈ Ω = [−2, 2], and x ∈ D = [0, 2]×[0, 2]. Figure 8 show the quality and the convergence
respectively, of various reduced basis techniques for the parametric family in X = L1[−2, 2]. We note
that in this case all algorithms perform similarly in terms of approximation accuracy, however the
computational complexity of NGA appears to be the smallest (even smaller than that of EIM) due to
the especially simple formula for norming functionals in case p = 1.

Robust learning with implicit residual networks. In the work [20] we proposed an en-
tirely novel deep architecture utilizing residual blocks inspired by implicit discretization schemes.
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Figure 10: Classification re-
sults of the classical ResNet
(L) and implicit networks (R).

As opposed to the standard feed-forward networks, the outputs of the pro-
posed implicit residual blocks are defined as the fixed points of the appro-
priately chosen nonlinear transformations. We show that this choice leads
to improved stability of both forward and backward propagations, has a fa-
vorable impact on the generalization power of the network and allows for
higher learning rates. In addition, we consider a reformulation of ResNet
which does not introduce new parameters and can potentially lead to a re-
duction in the number of required layers due to improved forward stability
and robustness. For the second example, we consider another small test
problem illustrated in Figure 10. It consists of 513 points organized in two
differently labeled spirals. Here we use the implicit network architecture
with 6 hidden nodes on each of the 25 layers and tanh activation insted
of ReLU . Figure 10 illustrates convergence of the networks and the clas-
sification results. One can see that the proposed implicit scheme is more
accurate and robust than the classical ResNet. Finally, we also derive the
memory efficient reversible training algorithm and provide numerical results
in support of our findings.
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Greedy shallow networks (GSN): an innovative approach for constructing and training neu-
ral networks. In [8] we developed a novel greedy approach to obtain a single layer neural network
approximation to a target function with the use of a ReLU activation function. In our approach we
construct a shallow network by utilizing a greedy algorithm where the set of possible inner weights acts
as a parametrization of the prescribed dictionary. To facilitate the greedy selection we employ an integral
representation of the network, based on the ridgelet transform, that significantly reduces the cardinality
of the dictionary and hence promotes feasibility of the proposed method. Our approach allows for the
construction of efficient architectures which can be treated either as improved initializations to be used
in place of random-based alternatives, or as fully-trained networks, thus potentially nullifying the need
for training and/or calibrating based on backpropagation. Numerical experiments demonstrate the ten-
ability of the proposed concept and its advantages compared to the classical techniques for training and
constructing neural networks. See, e.g., Figure 11 where we compare the new deep network architecture
designed with our GSN approach with an architecture designed by classical random initialization.

(a) 3.27e-02 (b) 3.09e-02 (c) 6.96e-02

Figure 11: Approximation comparisons via: (a) GSN initialization, (b) neural network with GSN initialization, (c) neural
network with random initialization. Values under the images indicate the `2-approximation error on the test set.

5. Transport methods for large-scale Bayesian inference and optimal design

Learning from data, with quantified uncertainty, is a cross-cutting problem in the AEOLUS effort.
Moreover, our broader goal is to “close the loop” between inference and observation—using existing
models (accounting for their parametric uncertainties and inadequacies) to drive the optimal collection of
new data, where optimality is defined according to particular prediction or design goals. These problems
induce enormous computational challenges: Bayesian inference in high or infinite parameter dimensions,
and in generically non-Gaussian settings; inference for dynamical models with sequentially arriving data;
and an outer loop of optimization for optimal experimental design (OED), where inference must be
performed for multiple realizations of the data at each iteration.

To address these challenges, we are focusing on optimization-driven inference methodologies that
employ transportation of measure as a unifying concept. Compared to more traditional approaches such
as Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC), transport offers potentially
significant gains in efficiency; a natural ability to harness modern massively parallel and heterogeneous
computing hardware; multiple “hooks” for identifying and exploiting low-dimensional structure; the
ability to harness intrusive (e.g., gradient and Hessian) model information when available, and to proceed
efficiently when it is not; and rich tradeoffs between computational effort and accuracy. Many transport
approaches can be viewed as variational Bayesian alternatives to asymptotically exact sampling methods
such as MCMC, but with a different representation of the posterior distribution (or the joint parameter-
data distribution) that is adaptable and infinitely refinable.

We are building on some of our past work in transport-based inference to create: (i) new nonpara-
metric variational inference methodologies; (ii) fast estimators of posterior normalizing constants for
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OED; and (iii) ensemble-based sequential inference methods. We detail these developments below.

5.1. Stein variational Newton methods for BIP and OED

To address the critical curse-of-dimensionality challenge in Bayesian inverse problems, we developed a
projected Stein variational Newton (pSVN) method [4] based on SVN [10], which constructs a compo-
sition of transport maps represented by radial basis functions that push forward the samples drawn from
prior distribution of the parameter to its posterior distribution, by minimizing a Kullback–Leibler (KL)
divergence between the pushforward prior and the posterior We exploited the essential property that the
posterior often departs from the prior in only an intrinsic low-dimensional subspace, and projected the
high-dimensional parameters to this subspace, informed by the Hessian of the parameter-to-observable
map. We demonstrated the advantages of pSVN in (1) effectively alleviating the curse of dimensionality,
(2) preserving high accuracy in computing statistics of some QoI w.r.t. the posterior, (3) converging
rapidly with convergence rate independent of the number of samples, (4) achieving good strong scala-
bility w.r.t. the number of cores. More details are provided in Figure 12.
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Figure 12: Left: Decay of eigenvalues log10(|λi|) with increasing dimension d. Middle: Decay of stopping criterion—the
averaged norm of the update wl − wl−1 w.r.t. the iteration number l, with increasing number of samples. Right: Decay
of the wall clock time (seconds) of different computational components w.r.t. increasing number of processor cores.

We extended SVN based methods to compute the expected information gain (EIG) [22], a key
objective in Bayesian OED, which consists of (1) efficient and accurate sampling from the posterior,
(2) an effective decoupling technique (construction and evaluation) to compute the often intractable
model evidence appearing in EIG. This method enjoys the combined merits of superior efficiency over
MCMC sampling and greater accuracy than Laplace approximation, thus mitigating the cost of the inner
Bayesian inverse problem (Figure 13).

Stein
MC
Laplace

d = 2 Reference Prior Stein Laplace

EIG 14.74 21.08 14.71 15.35

d = 4 Reference Prior Stein Laplace

EIG 13.02 29.47 12.98 14.40

Reference computed with 106 samples from prior. The
number of samples from prior, Stein, and Laplace are 500.

For Stein, we use 300 samples for map construction and 200
samples for evaluation.

Figure 13: Left: contours of banana-shaped posterior density and samples obtained by Monte Carlo, Stein, and Laplace
sampling, indicating superiority of Stein. Right: numerical results for EIG evaluation in dimensions d = 2, 4.

5.2. Coupling methods for nonlinear ensemble filtering and smoothing

A grand challenge in Bayesian computation involves the development of online inference algorithms
for dynamical models, such as the coupled nonlinear PDE models proposed for additive manufacturing
processes in Section 2. Here we wish to estimate both the parameters and state of the system, from
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sequentially arriving data, with a cost that does not grow in time and an error that remains uniformly
bounded. If the dynamics are linear and all distributions are Gaussian, the classical Kalman filtering
and smoothing recursions provide a complete solution. In the nonlinear and non-Gaussian application
problems at hand, however, inference becomes far more challenging. Existing methods are typically either
consistent but restricted in dimensionality and scale (e.g., particle filters, smoothers, and more general
SMC algorithms for state space models), or relatively scalable but inconsistent with the Bayesian solution
and unable to provide any guarantees for meaningful UQ (e.g., the ensemble Kalman filter (EnKF)).

To address these gaps, we seek a consistent, recursive Bayesian inference methodology that preserves
many of the desirable features of ensemble methods—e.g., practical performance in high dimensional
systems, tractable and non-intrusive computations—while addressing the limitations just described.

Our current work has proposed a new mathematical framework for generalizing the EnKF through
the lens of measure transport [21]. We seek nonlinear transport maps that couple the prior to the
posterior, and methods for estimating these maps efficiently from limited ensembles, using convex opti-
mization. This approach is also much less reliant on tuning parameters to achieve optimal performance.

Figure 14: Average RMSE (over 2000 assimila-
tion cycles) for the “hard” Lorenz-96 configura-
tion of [17]. Dashed line is the standard deviation
of the observational noise.

The underlying idea of this framework is to build a mapping
that pushes forward samples from the joint probability distri-
bution of state and data to the posterior distribution over the
state, which is a particular conditional of this distribution.
This map is built by first estimating a Knothe–Rosenblatt
(KR) map from the joint state-data distribution to a ref-
erence or “bridging” measure (e.g., a standard Gaussian),
and then inverting part of this map to build the prior-to-
posterior transformation. Since only sampling from the like-
lihood is required, this inference approach can be seen as an
instance of approximate Bayesian computation (ABC). The
key KR estimation step involves only convex optimization,
and the framework offers many opportunities for introducing
structure (e.g., sparsity, localization, and low rank) that can

improve stability and reduce computational cost. Figure 14 demonstrates filtering performance on a
challenging configuration of the benchmark Lorenz-96 system; here, introducing very simple and limited
nonlinearities in the map yields significant improvements in state estimation performance over the EnKF,
at minimal computational cost [21].

6. Intrinsically Bayesian robust theory for optimal operator design, error estimation, experi-
mental design, and model reduction

An intrinsically Bayesian robust (IBR) operator provides optimal expected performance relative to a prior
distribution over an uncertainty class of models. It is termed an optimal Bayesian operator if new data
are incorporated to produce a posterior distribution. The mean objective cost of uncertainty (MOCU)
is the expected increase in cost from applying an IBR operator instead of an optimal model-specific
operator in each model. Optimal experimental design (OED) selects an experiment that maximally
reduces expected MOCU, which is evaluated relative to the distribution conditioned on the experiment.

Optimal Bayesian classifier. [27] We construct an optimal Bayesian classifier (OBC) with serially
dependent training observations. The training observations are generated from a multidimensional vector
autoregressive process, and there exists uncertainty about parameters governing the model. We find an
OBC under the assumption of known covariance matrices of white-noise processes.

Robust filtering and experimental design. [26] We derive robust linear filtering and experimen-
tal design for systems governed by a stochastic differential equation (SDE) under model uncertainty,
assuming that the physical process is modeled via a SDE system with unknown parameters, and the
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signals are degraded by blurring and additive noise. Since the system is nonstationary, the Wiener-Hopf
equation is not solved in closed form. Hence, we discretize the problem to obtain a matrix system.

MOCU-based active learning for block polymer phase identification. We have a computational
model (for example, PDE or its surrogates) which connects the features (x) of the block polymer
of interest with its phases (y). We wish to identify the phase by characterizing Pr((y|x, θ), where
θ parameterizes uncertainty. The uncertainty can be reduced by sequential data collection (active
learning/sampling). We solve the problem to sequentially choose samples from the feature (design)
space for phase identification. The utility function is to reduce the cost of the uncertainty based on the
residual error by the IBR classifier, leading to MOCU-based active learning.

Multi-Objective MOCU. Given two cost functions that measure different aspects of operational
performance, we define a weighted cost function, an IBR operator relative to this cost function, and
MOCU for each specific value of the weight λ. The multi-objective MOCU as the average over λ relative
to a distribution of λ. The concept extends to a finite number of cost functions.

Optimal-Bayesian-transfer-learning for classifier error estimation. Transfer learning simultane-
ously learns from source domains that have lots of labeled data, and transfers the relevant knowledge
to a target domain with limited labeled data to improve prediction performance. Optimal Bayesian
Transfer Learning (OBTL) has source and target domains related through a joint prior density of the
model parameters. We extend the theory developed for learning OBTL classifiers to error estimation on
the target domain utilizing data from both the target and source domains.

MOCU-based reduced order modeling. When modeling complex systems, physical (spatial-
temporal) fields of interest are often governed by certain physics principles. PDE and large-scale ODE
systems after discretization are often the computation tools to simulate the systems behavior so that
design, control, and optimization can be studied. However, for these high-consequence decision making
problems, often we have to solve large-scale PDE/ODEs many times. Reduced-order models (ROMs)
aim to achieve the best approximation to the original full-order model (FOM). For operational objectives
such as design or control, we are formulating ROMs that have minimal performance reduction with
respect to the objectives.

7. Optimal uncertainty quantification for efficient experimental design of physical systems

Autonomous REsearch systems (ARESs), colloquially called robot scientists, offer the advantage of
high throughput scientific research. AERSs are characterized by their ability to autonomously execute
experiments, perform on-board characterization of experimental responses, learn from these observations
and dynamically plan subsequent experiments, often with a particular experimental objective in mind.
Examples of such ARES include ADAM, EVE and ARES. Our work this past year deals with the planning
component of an ARES, which uses an aggregate of prior knowledge (accounting for uncertainty) and
collected data to select the experiments to perform. Because planning on an ARES is to be done
autonomously, it is important to be systematic and explicit in the planning logic. More specifically,
it is important to properly encode 1) the tunable knobs or choices the ARES has control over 2) the
overall goal or objectives of running the experiment, 3) what data the ARES has as observations, 4)
some definition of state, from state of belief (what the ARES) knows about the system to be studied, to
some physical state (how the ARES is currently set, for example) and finally 5) an understanding of how
that state evolves after each experiment. In our work this year we have applied Bayesian experimental
design (BED) techniques to the design of experiments under uncertainty. We have focused on three key
ingredients. First is how to model state in an ARES. Second is a consideration of the overall learning
objectives, or modalities – how specific modalities impact the appropriateness of the decision-making
rules, or policies that govern which experiments an ARES performs. As a demonstration we have applied
BED to a problem that is ubiquitous in physics, chemistry and materials sciences: phase diagrams. We
shall see how BED techniques can be applied to the problem of efficiently learning key features of phase
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diagrams, or the phase diagram in its entirety.
A common goal in areas of science and engineering that rely on making accurate assessments of

performance and risk (e.g. aerospace engineering, finance, geophysics, operations research) for complex
systems is to be able to guarantee the quality of the assessments being made. Very often, the knowledge
of the system is incomplete or contains some form of uncertainty. There can be uncertainty in the form of
the governing equations, in information about the parameters, in the collected data and measurements,
and in the values of the input variables and their bounds. One of the most common cases is that initial
conditions and/or boundary conditions are known only to a certain level of accuracy. Even in the case
where the dynamics of a system is known exactly at a fine-grained level, computationally more tractable
coarse-grained models of the system often have to be derived under approximation, and thus contain
uncertainty. One way to refine a model of a system under uncertainty is to perform experiments to help
solidify what is known about the parameters and/or the form of the governing equations. Sampling
methods (such as Monte Carlo) can be used to determine the predictive capacity of the models under
the resulting uncertainty. Unfortunately, this determination can be computationally costly, inaccurate,
and in many cases impractical.

One promising approach to dealing with this challenge is Optimal Uncertainty Quantification (OUQ)
developed by Owhadi et al. OUQ integrates the knowledge available for both mathematical models and
any knowledge that constrains outcomes of the system, and then casts the problem as a constrained
global optimization problem in a space of probability measures; this optimization is made tractable by
reducing the problem to a finite-dimensional effective search space of discrete probability distributions,
parameterized by positions and weights. Much of the early work with OUQ has been to provide rigorous
certification for the behavior of engineered systems such as structures under applied stresses or metal
targets under impact by projectiles.

In this past year we have demonstrated the utility of the OUQ approach to understanding the
behavior of a system that is governed by a partial differential equation (and more specifically, by Burgers’
equation). In particular, we solved the problem of predicting shock location when we only know bounds
on viscosity and on the initial conditions. We have calculated the bounds on the probablity that the
shock location occurs at a distance greater than some selected target distance, given there is uncertainty
in the location of the left boundary wall. Through this example, we demonstrated the potential to apply
OUQ to complex physical systems, such as systems governed by coupled partial differential equations.
We compare our results to those obtained using a standard Monte Carlo approach, and show that OUQ
provides more accurate bounds at a lower computational cost. As OUQ can take advantage of solution-
constraining information that Monte Carlo cannot, and requires fewer assumptions on the form of the
inputs, the predicted bounds from OUQ are more rigorous than those obtained with Monte Carlo.

8. Optimization under uncertainty

We have developed and further extended our computational framework for optimal control and design
governed by PDEs under uncertainty with mean-variance risk measure, using Taylor approximation and
variance reduction techniques [3], along two lines: (1) multiobjective optimization under uncertainty,
which we have applied to optimal design of metamaterials [2]; and (2) chance-constrained optimization
under uncertainty, with application to optimal control of subsurface flow [1].

We posed multiobjective optimization under uncertainty subject to multiple PDE constraints as

min
z
J ({un}Nn=1, z) subject to Rn(un,m, z) = 0, i = 1, . . . , N, (1)

where Rn, n = 1, . . . , N , are N PDE constraints (e.g., for the metamaterial design problem, these
are acoustic wave equations with N different incident waves and frequencies), with un representing
the scattered wave for each incident wave. The cost functional J consists of a (weighted) linear
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combination of N objectives. In the application of optimal design of acoustic metamaterial for cloaking,
z represents the deterministic (infinite-dimensional) design field—the bulk modulus of the material—
while m represents the manufacturing uncertainty modeled by an infinite-dimensional random field with
Gaussian distribution µ = N (0, C). The cost functional is given by

J ({un}Nn=1, z) =
N∑
n=1

Em∼µ[|un|2] + βVarm∼µ[|un|2] + P(z), (2)

where P(z) is the L1 penalization of the design z to promote sparsity of the cloak material. We employed
Taylor approximation and variance reduction [3] to approximate each scattered wave un with respect to
the uncertainty m, in which the trace of the covariance-preconditioned Hessian of un with respect to m
that arises is approximated by the sum of dominant eigenvalues computed by randomized SVD. To solve
the infinite-dimensional optimization problem constrained by the N sets of eigenvalue problems and
governing state and adjoint acoustic wave equations, we proposed a quasi-Newton algorithm with the
Hessian approximated by that of a low-order Taylor approximation. We demonstrated that the cost of
our method, measured by number of PDE solves, is independent of the uncertain parameter and design
variable dimension. The optimal design of the cloak under uncertainty and the corresponding wavefields
with and without the optimal metamaterial cloak are shown in Figure 15, from which we can observe
effective cloaking of the obstacle from multiple incident waves. Further details on multiple frequencies,
more complex obstacle geometries, and the advantage of design under uncertainty are presented in [2].

Figure 15: Left: optimal cloak obtained by multiobjective optimal design (minimizing scattered waves with four incident
angles) under uncertainty. Right: the real part of the total wave without (top) and with (bottom) the presence of cloak.

We also studied chance-constrained optimization under uncertainty in the abstract formulation

min
z
J (u, z) subject to R(u,m, z) = 0 and P (f(u) ≤ 0) > α, (3)

where f denotes a (chance) functional of the state u, depending implicitly on m and z through the
PDE R(u,m, z) = 0, and P denotes the probability of f ≤ 0 with respect to the random field m.
To address the discontinuous inequality chance constraint in an infinite-dimensional random parameter
space, we proposed an adaptive combination of (i) smooth approximation of the discontinuous inequality
constraint, (ii) quadratic approximation of the objective functional and the chance functional, (iii) low-
rank approximation of the quadratic term of the chance functional, (iv) sample average approximation
of the chance probability, and (v) an external penalization of the inequality constraint by a differentiable
penalty function. We demonstated the accuracy, convergence, and efficiency of the proposed adaptive
algorithm in a chance-constrained optimal control of subsurface flow problem [1].
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A. Organizational chart

DRIVING SCIENTIFIC APPLICATION AREA: ADVANCED MANUFACTURING & MATERIALS
additive manufacturing testbed

(Turner)

materials self-assembly testbed
(Alexander and Oden)

INTEGRATIVE RESEARCH THRUSTS
Thrust 1: Learning

predictive models via Bayesian inference & optimization
(Webster & Willcox)

Thrust 2: Optimizing
experiments, processes, & designs under uncertainty

(Alexander & Ghattas)

RESEARCH SUB-THRUSTS
large-scale
Bayesian
inference

(Marzouk)

predictive
multiscale models

& inadequacy
(Moser)

learning from
scientific

data
(Webster)

low-dimensional
& reduced
modeling
(Willcox)

multifidelity
methods
for OUU

(Gunzburger)

large-scale
Bayesian

OED
(Ghattas)

optimal
operator
design

(Dougherty)

optimal
control under
uncertainty

(Biros)

Table 1: AEOLUS organizational chart. Research is organized under two integrative research thrusts, each featuring
four sub-thrusts that aim to overcome outer loop challenges in learning and optimization for complex uncertain models.
Specific application to advanced manufacturing and materials systems will be carried out under two application testbeds.

B. Work breakdown

The following page lists all AEOLUS personnel during Year 1 of the center (September 2018–September
2019), their positions and institutional affiliations, and the percentage of their time dedicated to each
one of the major AEOLUS research tasks.
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AEOLUS WORK BREAKDOWN STRUCTURE                                       

Additive 
manufacturing

Materials self-
assembly

Inference, inverse 
problems & learning 
from data

Low-dimensional 
modeling & 
reduced models

Optimization 
under 
uncertainty

Optimal 
experimental 
design

Predictive 
multiscale 
models & 
inadequacy

Administrative 
tasks 

George Biros, UT co-PI 20 20 30 20 10
Yuanxun Bao, UT postdoc 60 20 20
Will Ruys, UT PhD student 80 20
Gokberk Kabacaoglu, UT PhD student 80 20

Omar Ghattas, UT PI and center co-director 10 10 15 15 15 15 20
Peng Chen, UT research associate 10 10 20 20 20 20
Nick Alger, UT postdoc 50 50
Ilona Ambartsumyan, UT postdoc 40 40 20
Josh Chen, UT PhD student 20 30 30 20
Dingcheng Luo, UT PhD student 25 25 50
Tom O’Leary Roseberry, UT PhD student 40 40 20
Keyi Wu, UT PhD student 40 20 40

Robert Moser, UT co-PI 50 50
Todd Oliver, UT research scientist 50 50
Teresa Portone, UT PhD student 100

J. Tinsley Oden, UT co-PI 10 40 5 15 30
Danial Faghihi, UT research associate, now 
assistant professor, U. of Buffalo 25 20 10 5 25 15
Lianghao Cao, UT PhD student 10 70 20
Prashant Jha, postdoc 10 70 10 10

Karen Willcox, UT PI and center co-director 10 20 40 10 20
Parisa Khodabakhshi, UT postdoc 30 70
Shane McQuarrie, UT PhD student 10 90

Youssef Marzouk, MIT co-PI 60 30 10
Daniele Bigoni, MIT research scientist 80 20
Jakob Zech, MIT postdoc 100
Ricardo Baptista, MIT PhD student 70 30

Francis Alexander, BNL PI 25 25 25 25
Gyorgy Matyasfalvi, BNL postdoc (now at 
Princeton)
Anthony DeGennaro, BNL staff scientist 30 30 10 30

Clayton Webster, ORNL PI 20 20 20 20 10 10
Max Gunzburger, ORNL co-PI 30 10 30 30
Olena Burkovska, Householder Fellow, ORNL 40 20 30 10
Anton Dereventsov, ORNL postdoc 40 20 30 10
Armenak Petrosyan, ORNL postdoc 50 50
Viktor Reshniak, ORNL postdoc 50 50
Joe Daws, UTK PhD student 30 30 10 30
Edward Mitchell, UTK PhD student 50 50
Guannan Zhang, Senior Scientist, ORNL 10 30 30 10 20

John Turner, ORNL co-PI 50 50
Balasubramaniam Radhakrishnan, ORNL 
senior scientist 100
Steven DeWitt, ORNL staff scientist 100

Edward Dougherty, TAMU PI 25 15 30 30
Xiaoning Qian, TAMU associate professor 25 25 25 25
Byung-Jun Yoon, TAMU associate professor 30 35 35
Shahin Boluki, TAMU PhD student 50 50
Omar Maddouri, TAMU PhD student 50 50
Guang Zhao, TAMU PhD student 50 50
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C. AEOLUS publications, September 2018 – September 2019

C.1. Publications appeared or accepted

1. P. Chen, K. Wu, J. Chen, T. OLeary-Roseberry, O. Ghattas, Projected Stein variational
Newton: A fast and scalable Bayesian inference method in high dimensions, NeurIPS 2019.
https://arxiv.org/abs/1901.08659

2. N. Dexter, H. Tran, and C. G. Webster. Reconstructing high-dimensional Hilbert-valued functions
via compressed sensing. IEEE Signal Processing, 2019. Accepted (arXiv:1905.05853).

3. N. Dexter, H. Tran, and C. G. Webster. A mixed l1 regularization approach for sparse simultaneous
approximation of parameterized PDEs. ESAIM: Mathematical Modelling and Numerical Analysis,
2019. Accepted (arXiv:1812.06174).

4. Fritz, Marvin; Lima, E. A. B. F.; Nikolic, Vanja; Oden, J. T.; and Wohlmuth, B. Local and
Nonlocal Phase-Field Models of Tumor Growth and Invasion Due to ECM Degradation,M3AS
(Mathematical Models and Methods in Applied Sciences) Accepted. To Appear, 2019.

5. Amir Gholami, Kurt Keutzer, and George Biros, ANODE: Unconditionally Accurate Memory-
Efficient Gradients for Neural ODEs , Proceedings of the International Joint Conferences on Artifi-
cial Intelligence , Macao, China (19% acceptance rate), August 2019, https://arxiv.org/abs/1902.10298

6. Amir Gholami, George Biros et al, ANODEV2: A Coupled Neural ODE Framework, to appear in
NeurIPS 2019, Vancouver, December 2019 (Acceptance rate 21%), https://arxiv.org/abs/1906.04596

7. G. Kabacaolu and G. Biros, Machine learning acceleration of simulations of Stokesian suspensions,
Physical Review E 99(6), 2019 https://link.aps.org/doi/10.1103/PhysRevE.99.063313

8. M. McKerns, F. J. Alexander, K. Hickmann, T. J. Sullivan, and D. Vaughan, Optimal Bounds
on Nonlinear Partial Differential Equations in Model Certification, Validation, and Experiment
Design, in Advanced Analysis Solutions for Leading Experimental Techniques (2019 to appear)

9. A. Petrosyan, H. Tran, and C. G. Webster. Reconstruction of jointly sparse vectors via manifold
optimization. Applied Numerical Mathematics, 144:140150, 2019.

10. K. G. Reyes and F. J. Alexander, Autonomous Experimental Design and Execution, in Advanced
Analysis Solutions for Leading Experimental Techniques (2019 to appear)

11. Scarabosio, Laura; Faghihi, Danial; Wohlmuth, B.; Oden, J.T. Goal-Oriented Adaptive Modeling
of Random Heterogeneous Media and Model-Based Multilevel Monte Carlo Methods. Computers
& Mathematics with Applications, Accepted; To Appear, 2019.

12. X. Xie, G. Zhang, and C. G. Webster. Non-intrusive inference reduced order model for fluids using
deep multistep neural network. Mathematics, 7(8):115, 2019.

13. Chenhan Yu, Severin Reiz, and George Biros, Distributed O(N) Linear Solver for Dense Sym-
metric Hierarchical Semi-Separable Matrices, IEEE 13th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip, Nanyang Technological University, Singapore, October
2019

14. Zollanvari, A., and E. R. Dougherty, Optimal Bayesian Classification with Autoregressive Data
Dependency, IEEE Transactions on Signal Processing, 67(12). 3073-3086, 2019.
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C.2. Publications submitted

1. I. Ambartsumyan, W. Boukaram, T. Bui-Thanh, O. Ghattas, D. Keyes, G. Stadler, G. Turkiyyah,
and S. Zampini, Hierarchical Matrix Approximations of Hessians Arising in Inverse Problems Gov-
erned by PDEs, submitted, 2019.

2. Bigoni, D., Zahm, O., Spantini, A., Marzouk, Y.M. Greedy inference with layers of lazy maps.
Submitted (2019). arXiv:1906.00031.

3. P. Chen and O. Ghattas, Sparse polynomial approximations for affine parametric saddle point
problems, submitted. https://arxiv.org/abs/1809.10251

4. P. Chen and O. Ghattas, Sparse polynomial approximation for optimal control problems con-
strained by elliptic PDEs with lognormal random coefficients, submitted. https://arxiv.org/abs/1903.05547

5. J. Daws and C. G. Webster. A polynomial-based approach for architectural design and learning
with deep neural networks, Submitted (arXiv:1905.10457), 2019.

6. A. Dereventsov and C. G. Webster. The Natural Greedy Algorithm for reduced bases in Banach
spaces. Foundations of Computational Mathematics, 2019. Submitted (arXiv:1905.06448).

7. A. Dereventsov, A. Petrosyan, and C. G. Webster. Greedy shallow networks: A new approach for
constructing and training neural networks. Submitted (arXiv:1905.06448), 2019.

8. Khristenko, Ustim; Constantinescu, Andrei; Le Tallec, Patrick; Oden, J Tinsley; and Wohlmuth,
Barbara. A Statistical Framework for generating microstructures of two-phase random materials:
application to fatigue Analysis, arXiv preprint arXiv:1907.02412, July 2019 (in review, Multiscale
Modeling and Simulation: A SIAM Interdisciplinary Journal).

9. Musolas, A., Massart, E., Hendrickx, J., Absil, P.-A., Marzouk, Y.M. Low-rank multi-parametric
covariance estimation. Submitted (2019).

10. T. OLeary-Roseberry, N. Alger, O. Ghattas, Inexact Newton Methods for Stochastic Non-Convex
Optimization with Applications to Neural Network Training, submitted. https://arxiv.org/abs/1905.06738

11. V. Reshniak and C. G. Webster. Robust learning with implicit residual networks. Submitted
(arXiv:1905.10479), 2019.

12. Spantini, A., Baptista, R., Marzouk, Y.M. Coupling techniques for nonlinear ensemble filtering.
Submitted (2019). arXiv:1907.00389

13. Swischuk, R., Kramer, B., Huang, C. and Willcox, K. , Learning physics-based reduced-order
models for a single-injector combustion process. Oden Institute Report 19-13. Submitted to
AIAA Journal.

14. Tong, X. T., Morzfeld, M., Marzouk, Y.M. MALA-within-Gibbs samplers for high-dimensional
distributions with sparse conditional structure. Submitted (2019). arXiv:1908.09429

15. U. Villa, N. Petra, and O. Ghattas, hIPPYlib: An Extensible Software Framework for Large-Scale
Inverse Problems Governed by PDEs; Part I: Deterministic Inversion and Linearized Bayesian
Inference, submitted, 2019. http://arxiv.org/abs/1909.03948

16. Wang, Z., Cui, T., Bardsley, J., Marzouk, Y.M. Scalable optimization-based sampling on function
space. Submitted (2019). arXiv:1903.00870
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17. X. Xie, F. Bao, T. Maier, and C. G. Webster. Analytic continuation of noisy data using adams
bashforth resnet. Submitted (arXiv:1905.10457).

18. Zhao, G., Qian, X., Yoon, B-J., Alexander, F. J., and E. R. Dougherty, Model-based Robust
Filtering and Experimental Design for Stochastic Differential Equation Systems, IEEE Transactions
on Signal Processing (in review).

D. AEOLUS invited presentations, September 2018 – October 2019

D.1. Major keynote and plenary lectures at international conferences and other distinguished
lectures

• Willcox gives a keynote invited talk “Towards efficient multifidelity modeling for engineering de-
sign under uncertainty: From model reduction to scientific machine learning” at the European
Numerical Mathematics and Advanced Applications (ENUMATH) Conference, Egmond aan Zee,
The Netherlands, October 2019.

• Willcox gives the Kalman Lecture on “Predictive data science for physical systems: From model
reduction to scientific machine learning” at the University of Potsdam, Germany, September 2019.

• Willcox gives the opening plenary talk on “From nonlinear partial differential equations to low-
dimensional models: Physics-based model reduction” at the 15th U.S. National Congress on
Computational Mechanics, July 2019.

• Ghattas gives a keynote invited talk on “Large-scale stochastic PDE-constrained optimization” at
the International Congress on Industrial and Applied Mathematics (ICIAM 2019), July 2019.

• Willcox gives a keynote invited talk on “Predictive data science for physical systems: From model
reduction to scientific machine learning” at the International Congress on Industrial and Applied
Mathematics (ICIAM 2019), July 2019.

• Marzouk gives an invited plenary lecture on “Sampling via Transport: Preconditioning and Low-
Dimensional Structure” at the 12th International Conference on Monte Carlo Methods and Ap-
plications (MCM2019, http://www.mcm2019.unsw.edu.au/), Sydney, Australia, July 2019.

• George Biros gives the Argyris Lecture at the University of Stuttgart titled “Towards direct nu-
merical simulation of blood flow in microcirculation,” June 2019.

• Ghattas gives the Oden Lecture at the XVIth Conference on the Mathematics of Finite Elements
and Applications (MAFELAP 2019), London, UK, June 2019.

• Willcox gives a keynote talk “Predictive Data Science for Physical Systems: From Model Reduction
to Scientific Machine Learning” at the New York Scientific Data Summit, New York, NY, June
2019.

• Clayton Webster presents a keynote lecture on “Learning high-dimensional systems from incom-
plete data by optimal non-linear approximations,” Isaac Newton Institute for Mathematical Sci-
ences, University of Cambridge, Cambridge, United Kingdom, April 2019.

• Willcox gives the Charlemagne Distinguished Lecture “Projection-based model reduction: Formu-
lations for Physics-based Machine Learning” at RWTH Aachen, April 2019.
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• Ghattas gives a plenary talk entitled “Physics-Based Learning of Complex Models from Large-Scale
Data: A Scalable Bayesian Inversion Approach,” at the International Conference on Big Data in
the Geosciences, China University of Geosciences, Wuhan, China, January 2019.

• Webster presents a Distinguished Lecture at the Pacific Institute for the Mathematical Sciences
(PIMS) , IRMACS Theatre, Simon Fraser University, Burnaby, BC, December 2018.

• Ghattas gives the Charlemagne Distinguished Lecture at RWTH Aachen University, Germany. The
lecture was entitled “Large-scale Bayesian inversion with applications to flow of the Antarctic ice
sheet,” October 2018.

D.2. Other conference and workshop invited talks

October 2019

• Biros gives two invited talks at the European Numerical Mathematics and Advanced Applica-
tions Conference The first talk is “PDE-constrained optimization for importance sampling of rare
events”; and the second talk is “Reduced order models for the simulation of microfluidic devices
for biological fluids”

• Marzouk gives an invited lecture at RWTH Aachen University.

September 2019

• Tinsley Oden gives the Keynote lecture at cellMath, a workshop on tumor growth modeling held
at the Technical University of Munich (TUM) on September 10, 2019, on “A Review of Multiscale
Models of Tumor Growth”.

• Biros gives an invited talk titled “Machine learning-accelerated simulations of complex fluids”, at
the 10th International Workshop on Meshfree Methods for Partial Differential Equations

July 2019

• Tinsley Oden gives an invited Keynote lecture to Annual Meeting and Summer School 2019; IRTG
2379 in Austin on “Phase-Field Models of Phase Change of Complex Systems: Block Copolymers
and Growth of Vascular Tumors”, July, 2019.

• Biros gives an invited talk on “BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented
uncertainty quantification”, at the Applied Inverse Conference in Grenoble, France.

• Ghattas gives an invited talk entitled “Fast methods for Bayesian inverse problems governed by
PDE forward models with random coefficient fields,” at the Applied Inverse Problems Conference
in Grenoble, France.

• Francis J. Alexander gives a talk On the Connection between Optimal Uncertainty Quantification
and the Mean Objective Cost of Uncertainty, presented at US National Congress on Computational
Mechanics (USNCCM), Austin, Texas, July 29, 2019

• Chen gives an invited talk “Optimal design of acoustic cloak under uncertainty” at the 15th U.S.
National Congress on Computational Mechanics, Austin, US

• Chen gives an invited talk “Stein variational methods for Bayesian optimal experimental design”
at the Applied Inverse Conference in Grenoble, France.
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• Chen gives an invited talk “Stein variational, reduced basis Bayesian inversion” at the International
Congress on Industrial and Applied Mathematics (ICIAM 2019)

• Chen gives an invited talk “A scalable method for PDE-constrained optimization under high-
dimensional uncertainty” at the International Congress on Industrial and Applied Mathematics
(ICIAM 2019)

June 2019

• George Biros gives an invited talk titled “Reduced order models for nonlinear boundary value
problems with moving interfaces” at the Sandia National Labs (NM).

May 2019

• Ghattas gives an invited talk entitled “Large-scale Optimal Experimental Design for Bayesian
Inverse Problems” at the 5th International Conference on Design of Experiments (ICODOE 2019)
in Memphis.

April 2019

• AEOLUS graduate student Teresa Portone gives an invited talk “A Stochastic Operator Repre-
sentation of Model-Form Uncertainty” at Rising Stars in Computational & Data Sciences 2019.

• Marzouk gives invited talks at INRIA, Laboratoire Jean Kuntzmann. Grenoble, France;
Schlumberger-Doll Research. Cambridge, MA; Auburn University, Department of Mathe-
matics and Statistics, Colloquium. Auburn, AL; Worcester Polytechnic Institute, Department of
Mathematical Sciences, Colloquium. Worcester, MA.

• Willcox gives the Keynote Talk “Data to Decisions: Computational Methods for the Next Genera-
tion of Engineering Systems” at the SIAM Central Valley Regional Student Conference, University
of California, Merced, April 2019.

• Moser gives an invited lecture entitled “Making Reliable Computational Predictions: Is it Possible”
at Computational & Data Enabled Science Days at SUNY Buffalo.

March 2019

• AEOLUS graduate student Teresa Portone gives an invited talk “A Stochastic Operator Approach
to Representing Model-Form Uncertainty” at Sandia National Laboratories, Albuquerque, NM.

• Chen gives an invited seminar talk “Hessian in action for high-dimensional model reduction,
stochastic optimization, and Bayesian inversion” at Department of Mathematics, Peking Uni-
versity, China

February 2019

• Ghattas gives an invited talk entitled “Large-scale Optimal Experimental Design for Bayesian
Nonlinear Inverse Problems,” at the SIAM Conference on Computational Science and Engineering,
(CSE19) in Spokane, WA

• Willcox gives a Keynote Talk “Projection-based model reduction: Formulations for Physics-based
Machine Learning” at the LANL Workshop on Machine Learning for Computational Fluid and
Solid Dynamics, February 2019.
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• Chen gives an invited talk “Towards Breaking the Curse of Dimensionality for PDE-constrained
Optimization under High-dimensional Uncertainty” at SIAM Conference on Computational Science
and Engineering

• AEOLUS graduate student Joshua Chen gives a talk “Dimension Adaptive Sparse Quadrature and
Sparse Polynomial Parametrized Transport Maps for High Dimensional Bayesian Integration” at
SIAM Conference on Computational Science and Engineering

• AEOLUS postdoc Ilona Ambartsumyan presented a poster “An Edge-preserving Method for Joint
Infinitedimensional Bayesian Inversion” at SIAM Conference on Computational Science and Engi-
neering

January 2019

• The AEOLUS team presented four posters at the Department of Energy ASCR PI Meeting.

• Clayton Webster presents the Tianyuan Distinguished lecture on Learning high-dimensional sys-
tems from incomplete data by nonlinear approximation and deep networks; School of Mathematics,
Jilin University, Changchun, China.

• Marzouk and Webster are invited speakers at the Johns Hopkins University, USACM workshop on
Uncertainty Quantification in Computational Solid and Structural Materials Modeling, Baltimore,
MD.

December 2018

• Willcox visits LLNL and SNL Livermore to discuss research collaborations, and gives a talk “Lift
& Learn: From nonlinear PDEs to low-dimensional polynomial approximations.”

• Marzouk gives an invited talk at the University of Michigan Institute for Computational Discovery
and Engineering, Ann Arbor, MI.

October 2018

• Ghattas gives an invited talk entitled “Learning from data through the lens of models: Scalable
algorithms for Bayesian inverse problems,” at the Workshop on HPC and Data Science for Scientific
Discovery, at the Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, CA

• Marzouk gives a colloquium talk at Duke University, Department of Civil and Environmental
Engineering.

• Marzouk gives an invited talk at the Finnish Meteorological Institute, Helsinki, Finland.

• Chen gives an invited talk “Sparse quadrature for high-dimensional Bayesian inverse problems” at
the 4th annual meeting of SIAM central states section, Oklahoma

• AEOLUS postdoc Ilona Ambartsumyan gives a talk “Bayesian inversion of fault properties in two-
phase flow in fractured media” at the Annual Meeting of the SIAM Texas-Louisiana Section, LSU,
Baton Rouge, Louisiana

September 2018

• Ghattas gives an invited talk entitled “Scalable algorithms for optimal training data for Bayesian
inference of large scale models,” at the Workshop on Big Data Meets Large-Scale Computing,
Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, CA
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E. Other significant dissemination

Besides the traditional avenues for dissemination of research (publications and presentations), the AE-
OLUS team has been actively sharing the results of its research with the broader scientific community
via other mechanisms, including public software releases, teaching of summer schools and short courses,
development of new semester-long courses, co-organization of topical workshops and conference, and
training of Ph.D. students and postdocs who move on to academic and laboratory positions.

E.1. Software

None to report yet.

E.2. Short courses/summer schools taught and long courses developed

• Willcox gave invited tutorials on ”Multifidelity Models and Methods: Fusing models and data
to achieve efficient design, optimization, and uncertainty quantification” and ”Model Order Re-
duction: Approximate yet accurate surrogates for large-scale simulation” as part of the thematic
program on Science at Extreme Scales: Where Big Data Meeting Large-Scale Computing, Institute
for Pure and Applied Mathematics, September 2018.

• Chen lectured a short course “Approximation of high-dimensional parametric PDEs” at Depart-
ment of Mathematics, Peking University, China, March 2019.

• Marzouk is an invited lecturer at the MASCOT-NUM Research School on Uncertainty in Scientific
Computing, 2327 September 2019. Frjus, France.

• Chen is one main lecturer in the Cargese summer school on The Mathematics for Climate and
Environment, Cargese, France, September 2019.

• AEOLUS co-PI Moser gave an invited talk titled Uncertainty, Validation and Prediction with Com-
putational Models at 1st Computational Physics School for Fusion Research (https://sites.google.com/view/mit-
psfc-cps-fr2019/home), CPS-FR, August 2019.

• AEOLUS co-PI Marzouk gave an invited talk titled Bayesian modeling and computation for inverse
problems at 1st Computational Physics School for Fusion Research (https://sites.google.com/view/mit-
psfc-cps-fr2019/home), CPS-FR, August 2019.

• AEOLUS co-PI Moser gave an invited talk title ”Uncertainty, Validation & Prediction
with Computational Models” at 1st Computational Physics School for Fusion Research
(https://sites.google.com/view/mit-psfc-cps-fr2019/home), CPS-FR, August 2019.

E.3. Books published or in manuscript form

None to report yet.

E.4. Workshops and conferences co-organized

Team members served as co-chairs or co-organizers of the following workshops and conferences on
AEOLUS-related themes.

• AEOLUS co-PI Clayton Webster served as the Co-Chair of Surrogate models for UQ in complex
systems; Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge,
United Kingdom, November 2018.

• The Oden Institute and Sandia National Laboratories co-host Rising Stars in Computational &
Data Sciences in April 2019, bringing 32 outstanding female PhD students and postdocs to Austin
for a two-day intensive research workshop.
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• AEOLUS co-PI Clayton Webster served on the Organizing Committee for the Workshop on Sparse
Grid and Applications; Institute for Advanced Study, Technische Universitat Munchen, Munich,
Germany, July 2019.

• Webster served as the Organizing Chair of The 2019 SIAM SEAS Annual Conference; The
University of Tennessee, Knoxville, TN. Conference website: https://www.math.utk.edu/

SIAM-SEAS/

• Webster served on the Scientific Committee of the 8th workshop on high-dimensional approxima-
tion; Seminar for Applied Mathematics, ETH Zurich, Zurich, Switzerland.

• Ghattas is co-organizing the Workshop on Big Data, Data Assimilation, and Uncertainty Quan-
tification as part of the Trimester on Mathematics of Climate and the Environment, Institut Henri
Poincare, Paris, France, November 12-15, 2019. Ghattas is co-teaching the mini-course Big data,
data assimilation, and uncertainty quantification immediately preceding the workshop.

• Marzouk is co-organizing the MIT/Alan Turing Institute/Lloyds Register Foundation workshop on
Data-Centric Engineering, to be held Dec 9-12 in Cambridge, MA. Ghattas and Willcox are giving
invited talks at the workshop.

• Ghattas is co-organizing the Workshop on Mathematical Modeling in Glaciology at the Banff
International Research Station, Banff, Canada, January 1217, 2020.

• Marzouk is co-organizer of the Oberwolfach workshop on Data assimilation: mathematical foun-
dations and applications, April 2020.

• Willcox is co-organizer of the workshop on ”Multilevel and multifidelity sampling methods in UQ
for PDEs” at Erwin Schrödinger Institute, May 2020.

• Ghattas and Marzouk are co-organizing the Workshop on Mathematical Foundations of Data As-
similation and Inverse Problems, at the Conference on Foundations of Computational Mathematics
(FoCM20), Vancouver, Canada, June 15-24, 2020.

E.5. Other dissemination

• Ghattas and former Oden Institute and DiaMonD (MMICC-1) members Tobin Isaac, Noemi Pe-
tra, and Georg Stadler received the 2019 SIAM SIAG on Computational Science & Engineering
Best Paper Prize (for the period 2015–2018) for the paper “Scalable and Efficient Algorithms for
the Propagation of Uncertainty from Data through Inference to Prediction for Large-scale Prob-
lems, with Application to Flow of the Antarctic Ice Sheet,” published in 2015 in the Journal of
Computational Physics. Tobin Isaac presented the prize lecture at CSE19.

• Ghattas received the 2019 SIAM Geosciences Career Prize, for “groundbreaking contributions
in analysis, methods, algorithms, and software for grand challenge computational problems in
geosciences, and for exceptional influence as mentor, educator, and collaborator.”

• Ghattas and Marzouk are on the editorial board of the new journal Foundations of Data Science,
published by the American Institute of Mathematical Sciences.

• Marzouk began a two-year term as program director of the SIAM Activity Group on Mathematical
Issues in the Geosciences (SIAG/GS), January 2019.
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• Ghattas began a two-year term as Chair of the SIAM Activity Group on Uncertainty Quantification
(SIAG/UQ), January 2019

• A dedication ceremony was held September 2019 for the NSF-supported Frontera supercomputer
at UT Austins Texas Advanced Computing Center. Ghattas is Chief Scientist, and George Biros
and Robert Moser are on the Science Team, for this project. The nearly 50 petaflops Frontera is
the fastest university-based supercomputer in the world, and 5th fastest overall.
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