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1. Introduction

The AEOLUS Center is dedicated to developing a unified optimization-under-uncertainty framework
for (1) learning predictive models from data and (2) optimizing experiments, processes, and designs
governed by these models, all driven by complex, uncertain energy systems. AEOLUS will address
the critical need for principled, rigorous, scalable, and structure-exploiting capabilities for exploring
parameter and decision spaces of complex forward simulation models—the so-called outer loop.

This report summarizes key highlights in the third year of AEOLUS research. Of course, 15 pages
is not sufficient to do justice to the many AEOLUS research advances over the past year. Aiming to
strike a balance between breadth and depth, we have selected 16 highlights to feature here. The full
spectrum of research is represented by the 56 publications that have appeared or have been accepted
during the reporting period (Appendix C).

These highlights are organized under three sections. §2 features mathematical and computational
research advances that have been tailored to the structure of our nanomaterials self-assembly driving
problem, while §3 does the same for our additive manufacturing problem. Finally, §4 presents mathe-
matical and computational research advances that are cross-cutting and applied more broadly.

2. New model formulations, optimal design and control, and model reduction, with application
to nanomanufacturing

Here we describe research advances in SCFT and NLCH models (§2.1), optimal design (§2.2), reduced-
order modeling (§2.3), and model inadequacy (§2.4) for directed self-assembly of block copolymer melts.

2.1. SCFT and phase field theory and algorithms

Researchers: Lianghao Cao (UT), Danial Faghihi (UB), Omar Ghattas (UT), J. Tinsley Oden (UT)
During the reporting period, we continued to investigate mathematical and computational models for

the self-assembly of block copolymer melts. Our effort focused on the self-consistent field theory (SCFT)
model. In our mathematical analysis of the SCFT model, we are able to re-derive, with mathematical
rigor, the SCFT model from the particle-based statistical mechanics description of the diblock copolymer
melts and identify the approximations made during the derivation [10]. We also developed strategies
to improve the computational efficiency of numerical algorithms for solving the SCFT model [8]. First,
we extended the semi-implicit Siedel scheme for solving the saddle point problem of the SCFT model,
originally applicable only for spectral methods, to real space methods with arbitrary boundary conditions.
Second, we reformulated the SCFT problem in the framework of PDE-constrained optimization and
analyzed the well-posedness of the formulation. A second order (Newton) approach for accelerating
existing gradient-based algorithms is proposed.

We extended the dynamical density functional theory, which shares similarities with the nonlocal
Cahn-Hilliard model of phase change, for directed self-assembly of diblock copolymer. The extended
model incorporates (1) thermal effects, (2) polymer-substrate interaction effects, and (3) a local mobility
matrix. The resulting extended model produces realistic characterizations of the diblock copolymer
morphology development driven by thermal annealing and local laser heating. A fast linear semi-
implicit time-stepping scheme is developed. Together with the optimization under uncertainty methods
developed within AEOLUS, this extended model opens the door to (1) managing the polymer synthesis
time frame by optimal control of the annealing temperature, and (2) enabling real-time defect elimination
by controlling the trajectory of laser heating based on X-ray scattering data.

2.2. Nonlocal Cahn-Hilliard-based optimal design

Researchers: Lianghao Cao (UT), Joshua Chen (UT), Peng Chen (UT), Omar Ghattas (UT),
Dingcheng Luo (UT), J. Tinsley Oden (UT)

We investigated the optimal design problem in chemoepitaxy for the directed self-assembly (DSA)
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(a) Target morphology (b) Optimal guidepost design (c) Equilibrium state

Figure 1: Three dimensional optimal design with 16 circular guideposts.

of block copolymer (BCP) melts. In the chemoepitaxy process, a chemically patterned substrate is used
to guide the phase separation of BCP mixtures to form desirable morphologies. We adopted a forward
phase field model based on the direct minimization of the Ohta-Kawasaki free energy functional with the
addition of substrate interactions, as formulated in [9]. This leads to a PDE-constrained optimization
problem in which we optimally design the substrate pattern to achieve a target morphology, while having
sufficiently sparse features to attain manufacturing efficiency.

Our previous investigations revealed two key challenges. The first is the difficulty of achieving
sparse and manufacturable substrate designs when considering the entire substrate field as the design
variable. We observed that it is difficult to precisely enforce the sparsity conditions in the infinite-
dimensional setting through penalty terms alone. The second challenge stems from the existence of
multiple equilibrium states in the forward problem. The equilibrium state produced by the forward
solver depends on the initial guess chosen for the free-energy minimization. Thus, a substrate design
that is optimal for one initial guess may not be optimal for another. Moreover, for a fixed initial guess,
the equilibrium states are also sensitive to the substrate design. Small changes in the substrate design
may result in convergence to a very different equilibrium state.

In the past year, we addressed these two challenges. We considered a formulation of the optimal
design problem in which the substrate design consists of a given number of guideposts—units of at-
tractive substrate in a predefined shape. Optimization is then carried out over the locations of the
guideposts with penalties on the distances between guideposts to achieve sparsity of the design features.
In the existing literature, evolutionary algorithms are commonly used to optimize guidepost locations.
However, these algorithms are extremely slow and heuristic in nature. We developed a fast second
order (Newton) optimization method that employs the Hessian of the control objective (deviation from
a target morphology) with respect to the locations of the guideposts to significantly reduce the number
of iterations to convergence. The Hessian is computed through an efficient adjoint-based formulation.

We also proposed a computational strategy that addresses the difficulties presented by the multiple
equilibrium states in a deterministic setting. During each optimization iteration, we warm-start the
forward solver with the converged equilibrium state from the previous substrate design. This encour-
ages the equilibrium states to remain within a particular basin of attraction, providing continuity and
smoothness to the objective function. The reliability of the optimal design is then assessed at the end of
the optimization procedure by solving the forward problem for samples of the initial guess field, drawn
from an appropriate random field distribution.

Using various guideposts shapes, our computational strategy is able to produce optimal designs for a
range of problems, with an example provided in Figure 1. The efficiencies of both the forward solver and
the Hessian-based optimization method allow us to successfully solve the optimal design problems in
3D. These problems are intractable with optimization methods in practical use for this class of problems,
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Figure 2: Localized reduced models using operator inference. Left: singular value decay of the training data is much faster
when using localization. Right: Reduced model prediction (bottom) compared to the high-fidelity physics model (top).

which are derivative-free. Over the next year, we aim to systematically integrate uncertainties from both
the initial state and physical parameters into the optimal design problem.

2.3. Model reduction for nonlocal Cahn-Hilliard

Researchers: Rudy Geelen (UT), Karen Willcox (UT)
Reduced-order modeling is a key enabling mathematical technology for tackling AEOLUS control

and optimization target applications, but the Cahn-Hilliard phase-field model is widely recognized as a
challenging problem for traditional model reduction techniques, due to the difficulty in finding a low-
dimensional representation that captures the rich dynamics across multiple spatial and temporal scales.
To address this challenge we have developed the localized operator inference approach, a new method
for constructing local projection-based reduced models via data-driven learning directly from simulation
data [22]. The novelty of the approach is to replace the global reduced basis with multiple local
approximation subspaces. This localization permits adaptation of a reduced model to local dynamics,
thereby keeping the reduced dimension small and leading to significant efficiency improvements. This is
particularly important for reduced models of the Cahn-Hilliard equations, where the solution is typically
characterized by different physical regimes and exhibits high sensitivity to parameter variations. Our new
method differs from the existing literature in that the reduced models are learned in a completely non-
intrusive fashion, meaning that they learn the reduced models from simulation data without requiring
intrusive projections of high-fidelity model operators. This is an important consideration: the non-
intrusive nature of localized operator inference makes the method accessible, portable, and applicable to
a broad range of scientific problems, including those that use proprietary or legacy high-fidelity codes.

The localized operator inference approach follow a decomposition of computational tasks into two
phases: the offline phase where the reduced model is derived from the high-fidelity physics model, and
the online phase where the reduced model is deployed. The offline stage of the proposed approach
consists of the following consecutive steps: (1) the training data are collected and partitioned into
np groups/clusters of kinematically similar observations using unsupervised learning methods; (2) we
train the classifier to recommend a good local reduced model with respect to a predefined indicator;
(3) using operator inference we learn a set of cluster-specific reduced model operators. The reduced
operators associated with each snapshot cluster define a cluster-specific reduced model. This leads to
a set of np local reduced models that operate independently of one another. In the online phase of
the approach (1) the indicator is computed and, using the classifier constructed in the offline stage, the
most appropriate local reduced model is identified; (2) we evaluate the identified local reduced model
to produce the approximate solution.
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Figure 2 highlights the applicability of the proposed methodology in approximating, in a statistical
sense, the leading order dynamics of phase separation as governed by the Cahn-Hilliard equation in
an efficient manner. This is achieved by leveraging the low-rank local structure of the system: the
singular values of the local POD bases decay faster than the singular values of the global basis. We also
highlight the predictive capabilities of our reduced-order models when compared to high-dimensional
physics-based models at selected time steps.

2.4. Model inadequacy

Researchers: Daniil Bochkov (UT), Robert Moser (UT), Todd Oliver (UT)
Significant progress has been made on the development of a low-intrusive methodology for inad-

equacy characterization for the class of physical models that can be represented mathematically as
optimization problems, e.g., where a physically relevant solution is given by the system’s energy mini-
mum. The Self-Consistent Field Theory and the Ohta-Kawasaki phase-field model of block copolymer
self-assembly are examples of this class. The proposed methodology is based on a posteriori error
analysis. Specifically, the difference between low-fidelity and high-fidelity solutions is estimated using a
quadratic approximation of the high-fidelity model around the low-fidelity solution in which, however,
second-order derivatives are approximated by the low-fidelity model. The effect of such an approxima-
tion (compared to using exact second-order derivatives) is analyzed and expressed as a series involving
powers of operator D = H−10 H − I, where H and H0 are the Hessians of high-fidelity and low-fidelity
models, respectively, acting on the solution difference ∆x∗0 given by the quadratic approximation:

∆x∗ = ∆x∗0 −
D∆x∗0
1 + λ̃

+
D2∆x∗0 − λ̃D∆x∗0(

1 + λ̃
)2 − D3∆x∗0 − 2λ̃D2∆x∗0 + λ̃2D∆x∗0(

1 + λ̃
)3 + . . .

where ∆x∗ is the solution difference when using exact second-order derivatives and λ̃ is an expansion
parameter. We prove that due to the properties of D such a series can always be constructed to be
convergent (λ̃ > λ1−1

2 , where λ1 is the largest positive eigenvalue of D) and use the first several terms
to construct a stochastic inadequacy representation of a model.

Figure 3: Characterization of errors in the system’s energy and total chain length for test mass-spring model using proposed
methodology.

The developed methodology has been tested on a simple physical system of a mass-spring chain with
a nonlinear force-extension behavior, which is approximated by a linear dependence in the low-fidelity
model. Representative results of applying the proposed methodology to this test system are shown in
Figure 3 and demonstrate its ability to successfully characterize errors in QoIs.

Our future work in this direction will be focused on applying the developed approach to characterize
model inadequacy in the context of simulating self-assembly of block copolymers.
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3. Multiscale modeling and optimization, with application to additive manufacturing

In this section we describe research advances in multiscale modeling (§3.1) and nonlocal interface
modeling (§3.2) for solidification in additive manufacturing.

3.1. Multiscale modeling in additive manufacturing

Researchers: Yuanxun Bao (UT), George Biros (UT), Stephen DeWitt (ORNL), Yigong Qin (UT) and
Balasubramaniam Radhakrishnan (ORNL)

Additive manufacturing for metal alloys is revolutionizing the manufacturing industry by providing
a process for creating near net shape parts with geometries that are hard to obtain with conventional
processes. Additive manufacturing has the potential for specially tailored material properties in different
areas of a part through control of the alloy composition and/or microstructure. However, to fully
reap these benefits the processing conditions that lead to the desired local material properties must be
found. A number of factors make the solidification conditions across an additively manufactured part
heterogeneous, including variations in the local geometry, the feedstock, and the location relative to
the scan path of the heat source. This heterogeneity makes the determination of process-structure-
property connections challenging, even for a single part under nominally constant processing conditions.
Determining the processing conditions that give locally tailored properties is even more challenging. An
accurate and computationally efficient modeling framework to predict the effect of processing conditions
on microstructure formation would be a significant step toward solving these challenges.

To address those challenges we have been pursuing several research directions for enabling control
and uncertainty quantification in additive manufacturing systems. The first direction is the design of
physics-based multiscale models for solidification. This effort is completed and we have submitted a
paper to Acta Materialia [1]. The second direction is the formulation, analysis, and implementation of an
optimization problem in which the heat source (laser) is designed to achieve an optimal microstructure.
The third direction is the derivation of scientific machine learning algorithms for the development of
reduced order models. These two last efforts are ongoing.

Our formulations are based on phase-field PDEs with varying degrees of fidelity. We have imple-
mented parallel algorithms, with GPU acceleration, that enable direct numerical simulations of polycrys-
talline dendritic microstructure in full melt pools. We have also implemented simplified multicomponent
phase-field models that capture individual grains. Although these models cannot capture the dendritic
structure, they are over 10× faster than the full resolution model and they capture coarse scale features
of the solidification quite accurately. We have developed macroscale heat transfer simulations with semi-
analytic models for the dendritic microstructure. Finally, we are developing deep neural networks that
model the evolution of the microstructures. Below we summarize our work in physics-based multiscale
modeling. Results on the optimization and ML-based reduced models will be reported next year.

We studied the epitaxial, columnar growth of (multiply oriented) dendrites/cells for a spot melt in a
polycrystalline Al-Cu substrate using two-dimensional, phase-field, direct numerical simulations (DNS)
at the full-melt-pool scale, as depicted in Figure 4. Our main objective is to compare the expensive DNS
model to a much cheaper but approximate “line” model in which a single-crystal phase-field simulation
is confined to a narrow rectangular geometry. To perform this comparison, we developed algorithms that
automatically extract quantities of interest (QoIs) from both DNS and line models. These QoIs allow
us to quantitatively assess the assumptions in the line model and help us analyze its discrepancy with
the DNS model. We considered four sets of heat source parameters, mimicking welding and additive
manufacturing conditions, that create a combination of shallow and deep melt pools. Our largest DNS
simulation used 16K × 14K grid points in space. Our main findings can be summarized as follows.
Under AM conditions, the QoIs of line models are in excellent agreement with the full DNS results for
both shallow and deep melt pools. Under welding conditions, the primary spacing of the DNS model is
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Figure 4: Multiscale models for AM. Left: melt-pool heat transfer to compute temperature evolution. Middle: DNS
simulation of microstructure evolution. Right: Physics based reduced model.

smaller than the prediction of the line model. We identified a geometric crowding effect that accounts
for the discrepancies between the DNS and line models. We proposed two potential mechanisms that
determine the response of the microstructure to geometric crowding.

In our work, we have presented a series of 2D full-melt-pool phase-field simulations, a series of
multiscale simulations using a new line model approach, and an analysis of the error introduced by
the assumptions in the multiscale model. We consider epitaxial solidification only and not nucleation
in the liquid. The error in the multiscale model results is determined using quantities of interest that
include measures of the solidification front (the cell/dendrite tip temperature and tip velocity) and the
microstructure (primary arm spacing, secondary dendrite arm spacing, a hot cracking criterion, and the
permeability). The contributions of this work are threefold:

• To our knowledge, this is the first systematic, quantitative comparison between the predictions of a full
melt-pool phase-field simulation with multiple dendrite orientations/grains and a multiscale simulation
involving a phase-field micromodel to assess the effects of the multiscale approximations. Our analysis
demonstrates that the new line model yields similar values for most, but not all, of the quantities of
interest as the full-melt-pool simulations. To identify the source of differences between these models,
the analysis also includes a new model with assumptions between full melt-pool phase-field simulation
and the line model.

• We present a new line model that associates every point in the melt pool with a single line model
trajectory, permitting microstructure predictions at arbitrary locations.

• Our DNS simulations revealed a pattern that cannot be observed with existing steady-state point mod-
els or line models: a geometric crowding effect whereby the converging growth of the cells/dendrites
tends to decrease the primary spacing unless the system can rapidly reorder to decrease the number
of dendrites/cells.

3.2. Nonlocal phase-field models for solidification

Researchers: Olena Burkovska (ORNL), Stephen DeWitt (ORNL), Max Gunzburger (UT), Balasubra-
maniam Radhakrishnan (ORNL)

Phase-field approaches are commonly used for solidification modeling because they avoid having to
explicitly track the interface [4]. Standard phase-field models have diffuse interfaces that result from
a gradient energy term in the free energy functional that penalizes sharp changes in the solution and
regularizes the solution at the interface to yield the physically expected interfacial energy. Whereas these
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approaches have had significant success, the diffuse interface approach has an important drawback – the
computational grid must be fine enough to have several points across the interface. For alloy solidification
simulations in the additive manufacturing regime (rapid, directional solidification) this weakness is
particularly apparent due to restrictions on the allowable interface thickness. These restrictions are a
result of the breakdown of the assumptions in a part of the models known as the “anti-trapping current”
as the diffusion length decreases below the interfacial thickness. Therefore simulations of the evolution
of the solidification microstructure during additive manufacturing require very fine computational grids,
with large computational costs, to resolve very thin interfaces relative to the microstructural feature sizes.

Figure 5: Simulation of nickel dendrite (isotropic) with
nonlocal solidification model. The model is simulated
on a coarse mesh and phase-field solution has sharp
interfaces up to mesh resolution (∼1-2 cells).

To address this problem, we are developing new so-
lidification models with nonlocal interface formulations.
Here we build upon previous work in AEOLUS, where
a nonlocal Cahn-Hilliard model that can describe solu-
tions with perfectly sharp interfaces was developed [7].
A nonlocal solidification phase-field model with sharp
interfaces would sidestep the requirement to have mul-
tiple grid points across the interface and may provide a
more robust alternative to the anti-trapping current as
a way to prevent artifacts in the solution on computa-
tional grids scaled by the features of the solidification
microstructure. Side-stepping the anti-trapping term
will also allow us to incorporate non-equilibrium par-
titioning of solutes across rapidly moving solid-liquid
interfaces observed in metallic alloys under AM solidi-
fication conditions. Our initial focus is on a nonlocal
phase-field model of the solidification of a pure mate-
rial. Here, typically a phase-field equation of Allen-Cahn type is coupled to a local diffusion equation
describing the temperature evolution. We are interested in obtaining discontinuous solutions, which is
the case for the nonlocal Allen-Cahn type problem only at steady state. In the transient phase, dur-
ing interface motion, this model necessarily leads to diffuse interfaces. In light of this, we also derive
a new non-mass conserving Cahn-Hilliard model to describe the interface evolution. This in essence
“de-regularizes” the temporal derivative of the phase field variable from the space of square-integrable
functions L2(Ω) on the domain Ω to the dual space H−1(Ω). This permits the solution to assume sharp
interfaces during the whole time evolution and not only at the steady-state. We analyze the problem
and derive well-posedness of time-discrete and continuous formulations, and regularity properties of the
solution together with conditions under which sharp-interfaces are obtained [5].

Furthermore, in our ongoing work [6] we are evaluating the new model as an alternative to the
established local models for solidification of pure materials, such as, e.g., [26, 31], in the context of
relevant test cases and conducting a comparative study of the interface evolution. Here, our goals are
threefold: (1) to demonstrate equivalence with a standard local model in the limit of a decreasing inter-
facial thickness (which has previously been demonstrated to be consistent with theory and observations),
(2) to demonstrate improved accuracy on coarse computational grids compared to the local model, and
(3) to lay the groundwork for a nonlocal, sharp interface phase-field model of alloy solidification.

4. Cross-cutting methods and broader applications

In contrast to the mathematical/computational/statistical advances in §2–§3, which have been tailored
to driving advanced materials and manufacturing problems, we have made significant advances in cross-
cutting research in inference, learning, optimization, optimal control, experimental design, uncertainty
quantification, and model reduction methods that are applied more broadly. Ten of these are described

7



in §4.1–§4.10 below, while others are described in the publications listed in Appendix C.

4.1. Joint dimension reduction for Bayesian inference in non-Gaussian settings

Researchers: Ricardo Baptista (MIT), Michael Brennan (MIT), Youssef Marzouk (MIT)
Many dimension reduction methods for Bayesian inverse problems exploit the fact that the data

inform only a low-dimensional subspace of the parameters, relative to the prior. Our past work has
exploited such likelihood-informed subspaces [16, 30], and their extensions in the form of certified
dimension reduction [17, 36], to accelerate many algorithms for Bayesian computation, ranging from
Markov chain Monte Carlo [15] to Stein variational methods [11, 12].

Figure 6: Posterior approximation error for dif-
ferent data projections.

A key idea underlying our recent work is that there ex-
ists a “dual” low-dimensional subspace of the data, which
can be extracted and exploited in algorithms, with guaran-
tees of optimal reduction in some cases and certified error
bounds in others. In the past year, we have used this ob-
servation to create new methods for joint reduction of the
parameters X and data Y for Bayesian inference. These
methods are particularly useful for likelihood-free inference
(LFI) algorithms, where the dimension of the data is oth-
erwise a significant computational bottleneck. Let Xr de-
note coordinates in the retained low-dimensional subspace of
the parameters, and X⊥ coordinates in the complementary
subspace; similarly, let Ys describe the retained subspace
of the data and Y⊥ its complement. Then the expected error in the posterior can be bounded as
EY [DKL(πX|Y ||π̂X|Y )] = I(X,Y ) − I(Xr, Ys) ≤ I(X⊥, Y |Xr) + I(Y⊥, X|Ys). For distributions that
satisfy a certain logarithmic Sobolev inequality (see details in [3, 36]), the conditional mutual informa-
tion (CMI) terms on the right can themselves be bounded using averaged Hessian information. For
example, the CMI between the parameters X and the “discarded” data Y⊥ can be bounded as:

I(X,Y⊥|Yr) ≤ Cπ EπX,Y ‖∇x∇y⊥ log π(x, y)‖2F = Cπ EπX,Y ‖∇x∇y⊥ log π(y|x)‖2F .

A similar expression applies for reduction of the parameters. These upper bounds can themselves be
minimized over projectors of any given rank, yielding a joint dimension reduction method that controls
posterior approximation error. Figure 6 illustrates results for a remote sensing inverse problem, where
data projection based on our CMI bound performs significantly better than principal component analysis
or even canonical correlation analysis. We have demonstrated initial versions of this reduction method
in nonlinear filtering [27] and are currently evaluating its implications on performance and scaling of LFI
methods in high dimensions.

4.2. Approximation and representation of transport maps

Researchers: Jakob Zech (MIT), Ricardo Baptista (MIT), Fengyi Li (MIT), Joshua Chen (UT), Youssef
Marzouk (MIT)

Measure transport methods, which seek deterministic transformations between a simple/tractable
“reference” probability measure and a more complex “target” probability distribution of interest, are
central to many AEOLUS algorithmic developments and target applications. As detailed in earlier
reports, these methods are useful for: (1) variational Bayesian inference, including certain optimization-
based approaches to Bayesian inverse problems; (2) density estimation; (3) generative modeling; and (4)
likelihood-free or simulation-based inference (as exemplified in our approach to parameter learning and
optimal experimental design for phase separation of block copolymer melts [2] and reported on last year).
Normalizing flows, now a standard tool in machine learning, are essentially specific parameterizations of

8



Figure 7: Relationship between pWGD, pSVGD, WGD, SVGD, and their corresponding dynamics and gradient flows.

transport maps, and the underlying transport ideas are closely related to both variational autoencoders
and generative adversarial networks for generative modeling.

A key aspect of our AEOLUS effort has aimed at establishing a more fundamental understanding of
the power and limitations of these techniques, and of their performance in high dimensions. To this end,
we have recently published two papers [37, 38] that provide the first (to our knowledge) convergence
analysis of parametric transport maps, focusing on sparse polynomial/rational approximations or ReLU
neural network approximations of triangular maps on bounded domains. In the finite dimensional setting,
specifically for probability measures ρ and π with analytic densities on the d-dimensional cube [−1, 1]d,
we show that there exist approximations T̃ of the triangular monotone Knothe–Rosenblatt rearrangement
such that the distance between T̃]ρ and π converges exponentially fast. The notion of distance comprises
the Hellinger distance, the total variation distance, the Wasserstein distance, and the Kullback–Leibler
divergence. These rates do depend on dimension, however. In a second part of this effort, we have
analyzed the infinite-dimensional setting, i.e., probability measures ρ and π on [−1, 1]N. Here, under
suitable assumptions, we show that the triangular Knothe–Rosenblatt map can be approximated by
rational functions with a dimension-independent algebraic convergence rate. Our results are applicable
to posterior measures arising in certain inference problems where the unknown belongs to an (infinite
dimensional) Banach space. In particular, we show that it is possible to efficiently approximately sample
from certain high-dimensional measures by transforming a lower-dimensional latent variable. In both the
finite and infinite-dimensional settings, we give explicit a priori descriptions of anisotropic ansatz spaces
that achieve the convergence rates described, useful for numerical implementations. Our ongoing work
aims at addressing the case of unbounded domains, where precise control of the tails of transport maps
(linked to the tails of the associated distributions) is a key challenge.

4.3. Wasserstein gradient flows for inverse problems

Researchers: Peng Chen (UT)
The Bayesian formulation of inverse problems is of central importance across such fields as machine

learning, uncertainty quantification, and data assimilation. Sampling methods for high-dimensional
Bayesian inference problems usually face the curse of dimensionality, i.e., the computational complexity
grows rapidly (often exponentially) with parameter dimension. Following our recent work [12] on the
projected Stein variational gradient descent (pSVGD) method, which demonstrates mitigation of the
curse of dimensionality faced by SVGD, we proposed in [32] a projected Wasserstein gradient descent
method (pWGD) and provided a detailed convergence analysis. (Figure 7 shows the relationships).
Since WGD seeks a steepest descent direction in L2 space for a transport map that minimizes the
Kullback–Leibler divergence between the pushforward distribution and the posterior distribution at each
iteration of the algorithm, and L2 is bigger than the reproducing kernel Hilbert space (RKHS) used by
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Figure 8: Left: pWGD preserves high accuracy with increasing dimension. Middle: Decay of the eigenvalues, indicating
intrinsic dimensionality, is independent of parameter dimension and number of samples. Right: time vs CPU cores.

SVGD, we observe faster convergence of WGD relative to SVGD for low-dimensional inference problems,
and faster convergence of pWGD relative to pSVGD for inference problems in high dimensions.

The underlying density function of a particle system of WGD is approximated by kernel density
estimation (KDE), which is known to cause particle collapse in high dimensions. We overcome this
challenge by exploiting the intrinsic low-dimensional structure of the difference between the posterior
and prior distributions. The parameters are projected into a low-dimensional subspace to alleviate
the approximation error of KDE in high dimensions. We formulated a projected Wasserstein gradient
flow and analyzed its (exponential) convergence property under mild assumptions. Several numerical
experiments illustrate the accuracy, convergence, and complexity scalability of pWGD with respect to
parameter dimension, sample size, and processor cores (Figure 8). As an extension, we are currently
working on using neural networks to approximate the Wasserstein gradient in high dimensions.

4.4. Advances in optimal experimental design

Researchers: Peng Chen (UT), Omar Ghattas (UT), Youssef Marzouk (MIT), Keyi Wu (UT)
Optimal experimental design (OED) is a principled framework for maximizing information gained

from limited data in inverse problems, by optimizing the data acquisition (for example what to mea-
sure and when/where to measure it). Unfortunately, conventional methods for OED are prohibitive
when applied to expensive models with high-dimensional parameters (as we target in AEOLUS), since
the Bayesian inverse problem—by itself often intractable–must be solved at each iteration of OED.
We extended our work [34] on a fast and scalable computational framework for large-scale and high-

Figure 9: Sensors chosen by our fast method for goal-oriented Bayesian OED with three different prediction QoIs
represented by the integral of the state along the boundary of the first, second, and both blocks.

dimensional nonlinear Bayesian OED (reported last year), and developed in [35] a fast and scalable
computational framework for goal-oriented OED of large-scale Bayesian linear inverse problems that
finds sensor locations to maximize the expected information gain (EIG) for a predicted quantity of inter-
est (QoI) (Figure 9). By employing low-rank approximations of appropriate operators, an online-offline
decomposition, and a new swapping greedy algorithm, we are able to maximize EIG at a cost measured
in model solutions that is independent of the problem and sensor dimensions. We demonstrated the ef-
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ficiency, accuracy, and both data- and parameter-dimension independence of the proposed algorithm for
a contaminant transport inverse problem with infinite-dimensional parameter field. In ongoing work, we
are developing a principled parsimonious neural network-based surrogate for the parameter-to-observable
map to tackle the fully nonlinear Bayesian OED problem.

4.5. Optimization under uncertainty and chance-constrained optimization

Researchers: Peng Chen (UT) and Omar Ghattas (UT)
We developed a fast and scalable optimization method to solve chance-constrained optimization

problems governed by PDEs with high-dimensional random parameters [13]. To address the critical
computational challenges of expensive PDE solution and high-dimensional uncertainty, we constructed
surrogates of the constraint function by Taylor approximation of the parameter-to-objective map. To
tackle the difficulty of the nondifferentiability of the inequality chance constraint, we used a smooth
approximation of the discontinuous indicator function involved in the chance constraint, and we applied
a penalty method to transform the inequality constrained optimization problem to an unconstrained
one. Moreover, we designed a gradient-based optimization scheme that gradually increases smoothing
and penalty parameters to achieve convergence. Based on numerical experiments for a problem in
optimal control of subsurface flows, we demonstrated the accuracy of the Taylor approximation, its
ability to greatly accelerate constraint evaluations, the convergence of the continuation optimization
scheme (Figure 10), and the scalability of the proposed method in terms of the number of PDE solves
with increasing parameter dimension from O(103) to O(105).
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Figure 10: Left and middle: Chance constraint evaluated with different numbers of samples, by different Taylor approxi-
mations, and using different smoothing and penalty parameters at different steps (step 0 and 4). Right: Errors of different
Taylor approximations.

Solutions of PDE-constrained optimization under uncertainty problems require various approxima-
tions, including finite-dimensional approximation of function-valued optimization variables, numerical
approximation of PDE solutions, sample average approximation of risk measures or reliability constraints,
smooth approximation of indicator functions involved in probability evaluation, and penalty approxima-
tion for statistical moments or probability constraints. In [14], we developed a general framework for
a unified analysis of the impact of approximations on the system performance and established perfor-
mance bounds for approximate solutions of optimization problems in various formulations. Specifically,
under the convergence of each approximation, the performance or objective function at the cluster point
of the approximate optimization solution can be bounded by the optimal solution up to an arbitrarily
small positive constant. We demonstrated this analysis framework by applying it to a concrete exam-
ple, a buffered probability-constrained optimal control problem. Based on this unified analysis, we are
developing adaptive optimization algorithms to balance the approximation errors.

4.6. Non-intrusive model reduction for parameterized PDEs

Researchers: Parisa Khodabakhshi (UT), Shane McQuarrie (UT), Karen Willcox (UT)
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between the two domains. For verification, we have intentionally considered the same source datasets in the previous
experiment as target datasets for estimating the TL-based BEE and we plotted the obtained results in the second row of
Fig. 4. Clearly, the TL-based BEE veers away from the true error as we consider additional source data points. This
deviation is worse with poorly related source data (|↵| = 0.1). These results confirm previous findings in [23] that the
joint prior model in the utilized Bayesian TL framework acts like a bridge that distills the useful knowledge from the
source domain and effectively transfers it to the target domain.

Results from the second set of experiments that use an LDA classifier (see Sec. 4.7 of experimental procedures) were
similar as the ones obtained using the QDA classifier except for some differences in the performance of the TL-based
BEE with respect to the Bayes error that we report in Fig. 5 (see Sec. 5 of supplementary materials for additional results).
The TL-based BEE performance has similar trends with respect to small and moderate Bayes errors when compared to
the presented results obtained using the QDA classifier. A notable difference here is observed for large values of Bayes
error where the TL-based BEE shows decreased performance in terms of MSE deviation from the true error, which is
due to the fact that the employed LDA classifier is sub-optimal compared to the Bayes classifier. This is expected as
linear decision boundaries tend to be more sensitive to deviations from true model parameters for highly overlapping
class-conditional distributions. In our final set of experiments using synthetic datasets, we compare the performance
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Figure 6: MSE deviation from true error with respect to target data size. The proposed TL-based BEE is compared with other widely
used estimators. In all figures, the Bayes error is fixed at 0.2, and |↵| = 0.9.

of the proposed TL-based BEE to standard error estimators for different dimensions and various source datasets of
relatedness level |↵| = 0.9 to the target domain for an OBTL classifier (see Sec. 4.7 of experimental procedures). We
show in Fig. 6 the MSE deviation with respect to different target dataset size. As clearly shown, our proposed TL-based
BEE significantly outperforms all other standard error estimators by a substantial margin. In agreement with previous
findings in the literature, the standard error estimators perform comparably for low dimensions (i.e., d = 2), where
the bootstrap may show a slight advantage. As the dimensionality increases (i.e., d = 5), the performance shift of the
studied estimators becomes more apparent. For example, the resubstitution estimator performs poorly in the small
sample regime while the bootstrap estimator outperforms LOO and CV. Furthermore, we could notice that increasing
the size of the source dataset does not lead to any apparent performance improvement for the standard estimators. This
is because these estimators do not directly depend on the source data for error estimation (as they are incapable of taking
advantage of data from different yet relevant domains). However, providing additional source data to the TL-based BEE
considerably reduces the MSE deviation from the true error for all dimensions as shown in Fig. 6.

2.3 Performance on real-world RNA-seq datasets

To analyze the performance of the TL-based BEE on real-world data, we have trained a QDA classifier on a small
target dataset that consists of five sample points per class extracted from syn2759792 in Table 1. Using different
source datasets collected from syn4590909, we show in Fig. 7a the MSE deviation of the TL-based BEE from the

9

Figure 11: MSE deviation from true error with respect to target data size. The proposed TL-based BEE is compared with
other widely used estimators.

We developed a new framework for non-intrusive model reduction of parameterized time-dependent
systems of PDEs. Our method embeds the affine parametric dependence into the reduced order model
(ROM) by learning the corresponding ROM operators through a data-driven physics-based learning
approach, Parametric Operator Inference. For non-affine parametric dependence, the desired affine
structure can be approximated through the empirical interpolation method (EIM). The resulting para-
metric ROM can be evaluated for any value of the parameters without the need for interpolation between
ROMs constructed for specific parameter values. The proposed formulation paves the way for parametric
model reduction in high-dimensional parameter spaces with a reasonably small set of parameter samples
in each parameter dimension. We have formulated a priori conditions—which are independent of the
solution of the dynamical system—to be checked for the well-posedness of the learning scheme. In
addition, a robust regularization scheme is introduced to guard against ill-conditioning and overfitting.

4.7. Optimal Bayesian transfer learning for error estimation

Researchers: Frank Alexander (BNL), Edward Doherty (TAMU), Xiaoning Qian (TAMU), Byung Jun
Yoon (TAMU)

In many scientific or clinical settings, training data are typically limited, which impedes the design
and evaluation of accurate classifiers. While transfer learning (TL) can improve the learning in the
target domain by incorporating data from relevant source domains, it has received little attention for
error estimation. In our recent work, we investigated the knowledge transferability in the context of
error estimation within a Bayesian paradigm. We introduced a novel class of Bayesian minimum mean-
square error (MMSE) estimators [18] for optimal Bayesian transfer learning (OBTL) [25], which enables
rigorous evaluation of classification error under uncertainty in a small-sample setting. In our method, the
relatedness between the target and source domains are mathematically represented through a joint prior
of the model parameters, based on which useful knowledge and data can be transferred across domains.
A key property of the proposed TL-based BEE is its inherent ability to handle the uncertainty about the
model parameters in a Bayesian paradigm by integrating the prior with data, deducing robust estimates
by accounting for all possible parameter values. Except for very simple cases, the error estimates based
on the TL-based posterior probabilities cannot be analytically computed, and we proposed an efficient
and robust importance sampling strategy that allows one to obtain TL-based Bayesian error estimates
in practical applications.

Through extensive experiments based on both synthetic data (e.g., see Figure 11) as well as real-world
RNA sequencing (RNA-seq) data, we have investigated the performance of the proposed estimator for a
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broad family of classifiers that span diverse learning capabilities. Experimental results have clearly shown
that our proposed TL-based error estimation scheme clearly outperforms standard error estimators,
especially in a small-sample setting, by tapping into the data from other relevant domains. Technical
details of our method and further experimental results can be found in [28].

4.8. Active learning under model uncertainty

Researchers: Frank Alexander (BNL), Edward Doherty (TAMU), Xiaoning Qian (TAMU), Byung Jun
Yoon (TAMU)

As collecting and labeling data is often expensive and highly time consuming, sample/label efficiency
is one of the most important concerns in developing machine learning methods for scientific research
and discoveries. Active learning is one strategy in machine learning that tries to address the problem
and has been demonstrated for sample efficient learning with less required labeled data. In each active
learning iteration, a candidate training sample is chosen for labeling by optimizing an acquisition function.
Expected Loss Reduction (ELR) methods maximize the expected reduction in the prediction error given
a new labeled candidate based on a one-step-look-ahead strategy. ELR is optimal considering a single
query; however, it may get stuck before reaching the optimal model due to its myopic nature without
considering the long-term effect of a query on the classification error. While these active learning
methods based on one-step-look-ahead strategies are optimal, in terms of the maximum classification
error reduction based on a single query, it is well-known that there is no performance guarantee in the
long run for these myopic methods.
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Figure 12: (a) When the updated model posterior is not significant enough and the change is within the linear pieces,
MOCU/ELR-based active learning may get stuck; (b) Comparison of different active learning methods based on the
expected OBC error regret, demonstrating the effectiveness of Weighted- and Soft-MOCU based active learning methods;
(c) The proposed active learning methods have the potential to help discover the phase transition diagram for materials
systems of interest.

To improve convergence in the context of optimal Bayesian classification, we developed one-step-
look-ahead acquisition functions based on a family of measures considering the mean objective cost
of uncertainty (MOCU) that focuses on the uncertainty directly related to the classification error.
Empirically, MOCU-based Bayesian active learning may still suffer from similar myopic behavior in the
long run. We have analyzed its performance theoretically. To the best of our knowledge, we, for the first
time in our work [41], discovered the piecewise linear structure of MOCU-based acquisition function with
respect to the model posterior and identified the underlying reason for the observed myopic behavior
(Figure 12a). We further proposed active learning based on a weighted form of MOCU. We proved that
our proposed active learning algorithm converges to the optimal classifier of the true model. In [39],
we proposed another strictly concave approximation of MOCU—referred as Soft MOCU—that can be
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used to define an acquisition function to guide Bayesian active learning with the theoretical convergence
guarantee. For training Bayesian classifiers with both synthetic and real-world data, our experiments
demonstrated the superior performance of active learning by Soft MOCU compared to other existing
methods (Figure 12b). Both papers have been published in the International Conference on Artificial
Intelligence and Statistics (AISTATS) and the International Conference on Learning Representations
(ICLR) this year.

We have recently started developing computationally efficient query synthesis active learning methods
based on the Soft MOCU acquisition function, which enables efficient evaluation of continuous design
space based on a new gradient estimator for Gaussian process classifiers (GPC). In particular, we have
developed computationally efficient algorithms for Soft-MOCU based active learning with GPC. By
deriving the joint predictive distribution of label pairs as a one-dimensional integral, the computation of
the Soft-MOCU based acquisition function avoids retraining the GPC for each query, remarkably reducing
the computational overhead. We have also derived the gradient chain rule to efficiently calculate the
gradient of the acquisition function, which leads to the first query synthesis active learning algorithm
implementing MOCU-based strategies. Such a computationally efficient algorithm is more suitable when
exploring the continuous materials design space for example (Figure 12c). This work has been recently
accepted in the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) [40].

4.9. Optimal multiobjective/multifidelity computational campaign design

Researchers: Frank Alexander (BNL), Edward Doherty (TAMU), Xiaoning Qian (TAMU), Byung Jun
Yoon (TAMU)

The need for effective selection of the potential molecular candidates (e.g., material compounds)
that meet certain conditions based on desired target properties emerges in many real-world applications
in various domains, including materials design and drug discovery. For example, since the Coronavirus
disease 2019 (COVID-19) outbreak, an urgent scientific mission has been to screen known drug (or drug-
like) small molecules to identify potential drugs that may effectively target the virus’ spike proteins [29].
Such high-throughput virtual screening (HTVS) typically involves constructing a multi-stage pipeline
that consists of various models with different fidelity and computational complexity. A typical pipeline
places computationally cheaper models with lower fidelity at earlier stages to quickly filter out molecules
that likely do not possess the desired properties. Complex higher-fidelity models are used in later stages
for more accurate prediction of the molecular properties and accurate selection of candidates that meet
the desired selection criteria. In real applications, such HTVS pipelines are often empirically constructed
and operated, resulting in suboptimal performance.

In our recent work [33], we proposed an optimal decision-making framework for optimal computa-
tional campaign design. We considered two different scenarios, where in the first scenario, we aimed
to design the optimal screening policy that can maximize the throughput of the pipeline given a fi-
nite computational budget. Next, we considered the problem of joint optimization of throughput and
computational cost, where we aim to maximize the throughput while minimizing the overall cost of
screening.

CPC2 CPAT LncFinderPLEK

Figure 13: Optimal computational campaign for high-throughput virtual molecular screening.

Based on both synthetic as well as real examples, we have demonstrated that our proposed op-
timization framework significantly outperforms the baseline methods, in terms of efficiency, accuracy,
and robustness. Figure 13 illustrates an example of a molecular screening pipeline that is constructed
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by interconnecting several state-of-the-art lncRNA (long non-coding RNA) detection algorithms with
different complexity and accuracy that was used for evaluating the HTVS optimization framework in
a realistic setting. Experimental results show that optimal computational campaign based on our pro-
posed method leads to up to 7-fold acceleration of the screening speed, with virtually no degradation
in screening accuracy. Details of our proposed methods and the screening results can be found in [33].
We are currently applying the optimization framework to optimal screening of material compounds with
desired reduction potential (redox potential), an important problem for advanced materials design for
efficient batteries.

4.10. Nonlinear phase field models of vascular tumor growth

Researchers: Lianghao Cao (UT), David Fuentes (MDACC), Marvin Fritz (TUM), Prashant Jha (UT),
Tobias Köppl (TUM), J. Tinsley Oden (UT), Andreas Wagner (TUM), Barbara Wohlmuth (TUM)

As an application of the multiscale modeling theory and algorithms developed within AEOLUS, we
are continuing with our efforts in developing multi-species multiphase tumor growth models obtained as
a generalization of the Cahn-Hilliard-type phase-field model employed in simulating phase separation in
block copolymers (BCPs). At the mesoscale, tumor growth is a result of multiple constituents interacting
with each other. Continuum mixture theory based on mechanistic principles serves as a framework to
model the complex tumor growth phenomena. In our model, we consider multiple cell species, nutrients,
and proteins released by hypoxic cancer cells and postulate appropriate Ginsburg-Landau free energy
functionals and reaction terms to model the cancer growth. The free energy functional is similar to those
in nonlocal Cahn-Hilliard models of BCP, except that it includes energetic contributions from various
constituents.

Figure 14: Simulation of flow within breast tissue using a
multiscale 3D-1D flow model. Pressures in arterial network
and homogenized capillary bed are shown.

Our focus also includes an accurate represen-
tation of vascular networks and thereby accurate
vascular-interstitial flow; vasculature profoundly
impacts the growth of tumor and drug therapy.
Currently, we are developing a coupled multiscale
vascular flow and tumor growth model in collabo-
ration with colleagues at the Technical University
of Munich; see Figure 14 where preliminary results
using a multiscale vascular flow model are shown.
In our model, the arteries, which can be seg-
mented using magnetic resonance imaging (MRI)
data, are retained as a discrete network, whereas
capillaries are approximated by porous media. In
addition, interstitial space is also modeled using
porous media. This ongoing work extends our
earlier work [20, 21, 23] where the vascular tumor
growth model with discrete capillary flow was con-
sidered. We also note that parallel related work,
e.g., [24], is continuing with colleagues at the MD
Anderson Cancer Center (MDACC) in hopes of ac-
quiring data for multiscale vascular tumor growth models of glioma. Here, the tumor growth model can
simulate various treatment decisions and analyze the re-emergence of tumor post-treatment.
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[20] Marvin Fritz, Prashant K. Jha, Tobias Köppl, J. Tinsley Oden, Andreas Wagner, and Barbara
Wohlmuth. Modeling and simulation of vascular tumors embedded in evolving capillary networks.
Computer Methods in Applied Mechanics and Engineering, 384:113975, 2021.
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A. Organizational chart

DRIVING SCIENTIFIC APPLICATION AREA: ADVANCED MANUFACTURING & MATERIALS
additive manufacturing testbed

(Restrepo)

materials self-assembly testbed
(Alexander and Oden)

INTEGRATIVE RESEARCH THRUSTS
Thrust 1: Learning

predictive models via Bayesian inference & optimization
(Webster & Willcox)

Thrust 2: Optimizing
experiments, processes, & designs under uncertainty

(Alexander & Ghattas)

RESEARCH SUB-THRUSTS
large-scale
Bayesian
inference

(Marzouk)

predictive
multiscale models

& inadequacy
(Moser)

learning from
scientific

data
(Webster)

low-dimensional
& reduced
modeling
(Willcox)

multifidelity
methods
for OUU

(Gunzburger)

large-scale
Bayesian

OED
(Ghattas)

optimal
operator
design

(Dougherty)

optimal
control under
uncertainty

(Biros)

Table 1: AEOLUS organizational chart. Research is organized under two integrative research thrusts, each featuring
four sub-thrusts that aim to overcome outer loop challenges in learning and optimization for complex uncertain models.
Specific application to advanced manufacturing and materials systems will be carried out under two application testbeds.

B. Work breakdown

The following page lists all AEOLUS personnel during Year 3 of the center (October 2020–October
2021), their positions and institutional affiliations, and the percentage of their AEOLUS effort dedicated
to each one of the major AEOLUS research tasks.
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AEOLUS WORK BREAKDOWN STRUCTURE, YEAR 3 (October 2020 -- October 2021)

Additive 
manufacturing

Materials self-
assembly

Inference, inverse 
problems & learning 
from data

Low-dimensional 
modeling & 
reduced models

Optimization 
under 
uncertainty

Optimal 
experimental 
design

Predictive 
multiscale 
models & 
inadequacy

Administrative 
tasks Total

George Biros, UT co-PI 45 10 30 10 5 100
Yuanxun Bao, UT postdoc 60 40 0 0 100
Yigong Qin, UT PhD student 50 0 50 100
Naveen Himthani, UT PhD student 0 100 100
Dhwanit Agarwal, UT PhD student 100 100

Omar Ghattas, UT PI and center co-director 5 10 15 15 15 15 5 20 100
Peng Chen, UT research associate 15 20 20 20 20 5 100
Nick Alger, UT postdoc 50 50 100
Amal Alghamdi, UT postdoc 50 50 100
Josh Chen, UT PhD student 25 50 25 100
Dingcheng Luo, UT PhD student 25 25 50 100
Tom O’Leary Roseberry, UT postdoc 40 30 30 100
Keyi Wu, UT PhD student 40 20 40 100

Robert Moser, UT co-PI 50 50 100
Todd Oliver, UT research scientist 50 50 100
Daniil Bochkov, UT postdoc 50 50

J. Tinsley Oden, UT co-PI 10 40 5 15 30 100
Danial Faghihi, assistant professor, U. of 
Buffalo 25 20 10 5 25 15 100
Lianghao Cao, UT PhD student 10 70 20 100
Prashant Jha, UT research associate 10 70 10 10 100

Karen Willcox, UT PI and center co-director 10 20 40 10 20 100
Parisa Khodabakhshi, UT postdoc 30 20 50 100
Rudy Geelen, UT postdoc 30 70 100
Sean McBane, UT PhD student 10 50 40 100
Shane McQuarrie, UT PhD student 10 90 100

Youssef Marzouk, MIT PI 10 50 30 10 100
Ricardo Baptista, MIT PhD student 10 70 10 10 100
Kelvin Leung, MIT PhD student 100
Fengyi Li, MIT PhD student 100
Michael Brennan, MIT PhD student 100

Francis Alexander, BNL PI 25 25 25 25 100
Gyorgy Matyasfalvi, BNL postdoc (now at 
Princeton)
Anthony DeGennaro, BNL staff scientist 30 30 10 30 100
Vanessa Lopez-Marrero 100
Nathan Urban BNL staff scientist 100

Clayton Webster, UT/UTK PI 20 20 40 5 5 10 100

Max Gunzburger, UT Senior Researcher 30 20 10 30 10 100

Juan Restrepo, ORNL PI 100 100
Balasubramaniam Radhakrishnan, ORNL 
senior scientist 100 100
Olena Burkovska, Householder Fellow, ORNL 10 40 30 20 100
Stephen DeWitt, ORNL staff scientist 100 100

Edward Dougherty, TAMU PI 25 15 30 30 100
Xiaoning Qian, TAMU associate professor 25 25 25 25 100
Byung-Jun Yoon, TAMU associate professor 30 20 20 30 100
Omar Maddouri, TAMU PhD student 50 50 100
Mingzhou Fan, TAMU PhD student 50 50 100
Hyun-Myung Woo, TAMU PhD student 30 20 50 100

20



C. AEOLUS publications appeared or accepted, October 2020–October 2021

1. Adcock, B., Brugiapaglia, S., and Webster, C.G., Sparse polynomial approximation of high-
dimensional functions, SIAM Book Series in Computational Sciences and Engineering, 2021.

2. Alger, N., Chen, P., and Ghattas O., Tensor train construction from tensor actions, with application
to compression of large high order derivative tensors, SIAM Journal on Scientific Computing,
42(5):A3516–A3539, 2020.

3. Alghamdi, A., Hesse, M., Chen J., Villa, U., and Ghattas, O., Bayesian Poroelastic Aquifer
Characterization from InSAR Surface Deformation Data. Part II: Quantifying the Uncertainty,
Water Resources Research, 2021.

4. Ambartsumyan, I., Boukaram, W., Bui-Thanh, T., Ghattas, O., Keyes, D., Stadler, G., Turkiyyah,
G., and Zampini, S., Hierarchical matrix approximations of Hessians arising in inverse problems
governed by PDEs, SIAM Journal on Scientific Computing, 42(5):A3397–A3436, 2020.

5. Aretz, N., Chen, P., and Veroy, K., Sensor selection for hyper-parameterized linear Bayesian inverse
problems. PAMM, Vol. 20(S1), pp. e202000357, 2021.

6. Benner, P., Goyal, P., Kramer, B., Peherstorfer, B., and Willcox, K., Operator inference for non-
intrusive model reduction of systems with non-polynomial nonlinear terms. Computer Methods in
Applied Mechanics and Engineering, Vol. 372, pp. 113433, December 2020.

7. Brunn, M., Himthani, N., Biros, G., Mehl, M., and Mang, A., CLAIRE: Constrained Large Defor-
mation Diffeomorphic Image Registration on Parallel Computing Architectures, Journal of Open
Source Software, 6 (61), June 2021

8. Brunn M., Himthani, N., Biros, G., Mehl, M., and Mang, A., Fast GPU 3D diffeomorphic image
registration, Journal of Parallel and Distributed Computing, 149, 13pg, March 2021,

9. Brunn, M., Himthani, N., Biros, G., Mehl, M., and Mang, A., Multi-Node Multi-GPU Diffeo-
morphic Image Registration for Large-Scale Imaging Problems, SC’20, November 2020 (Atlanta,
Virtual)

10. Boluki, S., Qian, X., and Dougherty, E., Optimal Bayesian supervised domain adaptation for RNA
sequencing data, Bioinformatics, Vol. 37, No. 19, pp. 3212-3219, 2021.

11. Bukowski, R., Schulz, K., Gaither, K., Stephens, K.K., Semeraro, D., Drake, J., Smith, G.,
Cordola, C., Zariphopoulou, T., Hughes, T.J.R., Zarins, C., Kusnezov, D., Howard, D., and Oden,
J.T. Computational medicine, present and the future: obstetrics and gynecology perspective,
American Journal of Obstetrics and Gynecology, Vol. 224, No. 1, pp. 16-34, 2021.

12. Brennan, M., Bigoni, D., Zahm, O., Spantini, A., and Marzouk, Y.M, Greedy inference with
structure-exploiting lazy maps. Advances in Neural Information Processing Systems (NeurIPS),
2020.

13. Burkovska, O. and Gunzburger, M., On a nonlocal Cahn-Hilliard model permitting sharp interfaces,
Mathematical Models and Methods in Applied Sciences, 1(9):1749–1786, 2021.

14. Burkovska, O., Glusa, C., and D’Elia, M., An optimization-based approach to parameter learning
for fractional type nonlocal models, Computers & Mathematics with Applications, in press, 2021.
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15. Cao, L., Ghattas, O., and Oden, J.T, A globally convergent modified Newton method for the
direct minimization of the Ohta-Kawasaki energy with application to the directed self-assembly of
diblock copolymers, arXiv: 2010.15271, to appear, SIAM Journal on Scientific Computing, 2021.

16. Chen, P. and Ghattas, O., Projected Stein variational gradient descent, Advances in Neural Infor-
mation Processing Systems 33 (NeurIPS 2020), December 2020.

17. Chen, P. and Ghattas, O., Taylor approximation for chance constrained optimization problems
governed by partial differential equations with high-dimensional random parameters. SIAM/ASA
Journal on Uncertainty Quantification, Vol. 9(4), pp.1381-1410, 2021.

18. Chen, P. and Ghattas, O., Stein variational reduced basis Bayesian inversion. SIAM Journal on
Scientific Computing, Vol. 43(2), pp. A1163-A1193, 2021.

19. Chen, P., Haberman, M.R., and Ghattas, O., Optimal design of acoustic metamaterial cloaks
under uncertainty. Journal of Computational Physics, Vol. 431, p.110114, 2021.

20. Chen, P., Wu, K., and Ghattas, O., Bayesian inference of heterogeneous epidemic models: Appli-
cation to COVID-19 spread accounting for long-term care facilities. Computer Methods in Applied
Mechanics and Engineering, Vol. 385, pp. 114020, 2021.

21. Chao, C., Reiz, S., Yu, C., Bungartz, H.J., and Biros, G., Fast Approximation of the Gauss-Newton
Hessian Matrix for the Multilayer Perceptron, SIAM Journal on Matrix Analysis and Applications,
42 (1), 19pg, February 2021

22. Dereventsov, A., Webster, C.G., and Daws, J., An Adaptive Stochastic Gradient-Free Approach
for High-Dimensional Blackbox Optimization, Proceedings of International Conference on Com-
putational Intelligence, Springer Singapore, pp. 333-348, 2021.

23. Dereventsov, A., Petrosyan, A., and Webster, C.G., Greedy Shallow Networks: An Approach for
Constructing and Training Neural Networks, International Journal of Artificial Intelligence, Vol. 2
(0974-0635), pp. 58-73, 2021.

24. Dexter, N., Tran, H., and Webster, C.G., On the Strong Convergence of Forward-Backward
Splitting in Reconstructing Jointly Sparse Signals, Set-Valued and Variational Analysis, ISSN
1877-0533, pp. 1-15, 2021

25. Ehre, M., Papaioannou, I., Willcox, K., and Straub, D., Conditional reliability analysis in high
dimensions based on controlled mixture importance sampling and information reuse. Computer
Methods in Applied Mechanics and Engineering, Volume 381, August 2021, 113826.

26. Fritz, M., Jha, P.K., Köppl, T., Oden, J.T., Wagner, A., and Wohlmuth, B, Modeling and
simulation of vascular tumors embedded in evolving capillary networks, Computer Methods in
Applied Mechanics and Engineering, Vol. 384, pp. 113975, 2021.

27. Fritz, M., Jha, P.K., Köppl, T., Oden, J.T., and Wohlmuth, B., Analysis of a new multispecies
tumor growth model coupling 3D phase-fields with a 1D vascular network, Nonlinear Analysis:
Real World Applications, Vol. 61, pp. 103331, 2021.

28. Geelen, R. and Willcox, K, Localized non-intrusive reduced-order modeling in the operator in-
ference framework, Philosophical Transactions A, The Royal Society, accepted for publication,
2021.
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29. Ghattas, O. and Willcox, K., Learning physics-based models from data: Perspectives from inverse
problems and model reduction. Acta Numerica, Vol. 30, pp. 445-554, 2021.

30. Hong, Y., Kwon, B., and Yoon, B.J., Optimal experimental design for uncertain systems based
on coupled differential equations, IEEE Access, Vol. 9, pp. 53804-53810, 2021.

31. Hormuth, D.A., Phillips, C.M., Wu, C., Lima, E.A.B.F., Lorenzo, G., Jha, P.K., Jarrett, A.M.,
Oden, J.T., and Yankeelov, T.E, Biologically-Based Mathematical Modeling of Tumor Vasculature
and Angiogenesis via Time-Resolved Imaging Data, Cancers, Vol. 13, No. 12, 2021.

32. Jagalur-Mohan, J., and Marzouk, Y.M, Batch greedy maximization of non-submodular functions:
guarantees and applications to experimental design.” The Journal of Machine Learning Research,
in press (2021).

33. Kapteyn, M., Pretorius, J., and Willcox, K., A Probabilistic Graphical Model Foundation for
Enabling Predictive Digital Twins at Scale. Nature Computational Science, Vol. 1, No. 5, May
2021, pp. 337-347.

34. Khodabakhshi, P., Willcox, K., and Gunzburger, M., A multifidelity method for a nonlocal diffusion
model. Applied Mathematics Letters, Volume 121, November 2021, 107361.

35. Lorenzo, G., Hormuth, D.A., Jarrett, A.M., Lima, E.A. B. F., Subramanian, S., Biros, G., Oden,
J.T., Hughes, T.J.R., and Yankeelov, T.E, Quantitative in vivo imaging to enable tumor forecasting
and treatment optimization, arXiv: 2102.12602, 2021.

36. McBane, S. and Choi, Y, Component-wise reduced order model lattice-type structure design.
Computer Methods in Applied Mechanics and Engineering, Vol. 381, 2021, p.113813.

37. McQuarrie, S., Huang, C. and Willcox, K., Data-driven reduced-order models via regularized
operator inference for a single-injector combustion process. Journal of the Royal Society of New
Zealand, Vol. 51, No. 2 pp. 194-211, 2021, DOI: 10.1080/03036758.2020.1863237.

38. O’Leary-Roseberry, T., Villa, U., Chen, P., and Ghattas, O., Derivative-informed projected neural
networks for high-dimensional parametric maps governed by PDEs. Computer Methods in Applied
Mechanics and Engineering, Vol. 388, pp.114199, 2021.

39. Portone, T. and Moser, R.D., Baysian inference of an uncertain generalized diffusion operator.
SIAM/ASA Journal on Uncertainty Quantification, accepted for publication, 2021.

40. Reshniak, V. and Webster, C.G., Robust learning with implicit residual networks, Machine Learning
and Knowledge Extraction, 3(1): 34-55, 2021.

41. Reshniak, V., Trageser, J., and Webster, C.G., A nonlocal feature-driven exemplar-based approach
for image inpainting, SIAM Journal on Imaging Sciences, 13(4):2140-2168, 2020.

42. Subramanian, S., Scheufele, K., Himthani, N., and Biros, G., Multiatlas Calibration of Biophysical

Brain Tumor Growth Models with Mass Effect, 23rd MICCAI, October 2020 (Peru, Virtual)

43. Scheufele, K., Subramanian, S., and Biros, G., Fully Automatic Calibration of Tumor-Growth
Models Using a Single mpMRI Scan, IEEE Transactions on Medical Imaging, September 2020

44. Tunc, B., Hormuth, D., Biros, G., and Yankeelov, T.E., Modeling of Glioma Growth with Mass Ef-
fect by Longitudinal Magnetic Resonance Imaging, IEEE Transactions on Biomedical Engineering,
June, 2021
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45. Uribe, F., Papaioannou, I., Marzouk, Y.M., and Straub, D., Cross-entropy based importance
sampling with failure-informed dimension reduction for rare event simulation. SIAM/ASA Journal
on Uncertainty Quantification, 9(2): 818–847 (2021).

46. Villa, U., Petra, N., and Ghattas, O., hIPPYlib: An Extensible Software Framework for Large-
Scale Inverse Problems Governed by PDEs; Part I: Deterministic Inversion and Linearized Bayesian
Inference, ACM Transactions on Mathematical Software 47(2):34, 2021.

47. Willcox, K., Ghattas, O., and Heimbach, P., The imperative of physics-based modeling and inverse
theory in computational science, Nature Computational Science, Vol. 1, No. 3, pp. 166-168,
2021.

48. Xie, X., Bao, F., Maier, T., and Webster, C.G., Analytic continuation of noisy data using Adams
Bashforth residual neural network, Discrete & Continuous Dynamical Systems - S, 1937-1179,
2021.

49. Xie, X., Webster, C.G., and Iliescu, T., Closure Learning for Nonlinear Model Reduction Using
Deep Residual Neural Network, Fluids, 5(1,39):1-15, 2021.

50. Xu, Y., Narayan, A., Tran, H., and Webster, C.G., Analysis of the ratio of `1 and `2 norms in
compressed sensing, Applied and Computational Harmonic Analysis, Vol 55, 486-511, 2021.

51. Yoon, B.J., Qian, X., and Dougherty, E., Quantifying the multi-objective cost of uncertainty, IEEE
Access, Vol. 9, pp. 80351-80359, 2021.

52. Zech, J. and Marzouk, Y.M., Sparse approximation of triangular transports on bounded domains.
Part I: the finite-dimensional case. Constructive Approximation, in press, 2021.

53. Zech, J. and Marzouk, Y.M., “Sparse approximation of triangular transports on bounded domains.
Part II: the infinite-dimensional case.” Constructive Approximation, in press, 2021.

54. Zhao, G., Dougherty, E.R., Yoon, B.J., Alexander, F.J., and Qian, X., Bayesian active learning
by soft mean objective cost of uncertainty, 24th International Conference on Artificial Intelligence
and Statistics (AISTATS 2021), 2021.

55. Zhao, G., Dougherty, E.R., Yoon, B.J., Alexander, F.J., and Qian, X., Efficient active learning
for Gaussian Process Classification by error reduction, 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), 2021.

56. Zhao, G., Dougherty, E.R., Yoon, B.J., Alexander, F.J., and Qian, X., Uncertainty-aware active
learning for optimal Bayesian classifier, 9th International Conference on Learning Representations
(ICLR 2021), 2021.

D. AEOLUS invited presentations, October 2020–October 2021

D.1. Major keynote and plenary lectures at international conferences and other distinguished
lectures

1. Ghattas, O. “Parsimonious structure-exploiting deep neural network surrogates for Bayesian inverse
problems and optimal experimental design,” Opening Conference, NSF Institute for Mathematical
and Statistical Innovation, University of Chicago, October 7–9, 2020.
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2. Ghattas, O. “Parsimonious structure-exploiting deep neural network surrogates for Bayesian inverse
problems,” US National Congress on Computational Mechanics (USNCCM) 2021, Chicago, July
2021.

3. Ghattas, O. “Parsimonious structure-exploiting deep neural network surrogates for Bayesian inverse
problems,” MATHIAS 2021, Paris, France, October 3–7, 2021.

4. Oden, J.T. “Phase field models of the growth of tumors embedded in an evolving vascular network:
Dynamic 1D-3D models of angiogenesis.” Invited Talk, VII Workshop on Mathematical and
Computational Modeling of Tumor Growth, January 2021.

5. Oden, J.T. “An introduction to: The foundations of predictive computational science.” Invited
Talk, MDACC Data Science and Modeling Series, April 2021.

6. Webster, C., “Uncertainty quantification and approximation theory for parameterized PDEs,”
Invited short course, School of Mathematics, African Institute for Mathematical Sciences (AIMS),
Cape Town, South Africa, November 2020.

7. Willcox, K. “Aerospace Design in the Age of Big Data and Big Compute.” Invited Plenary Talk,
AIAA SciTech Forum & Exhibition, January 2021.

8. Willcox, K. “A Probabilistic Graphical Model Foundation for Predictive Digital Twins.” Invited
Plenary Talk, SIAM Conference on Computational Science and Engineering, March 2021.

9. Willcox, K. “Predictive Digital Twins and the Data-driven Future of Computational Science.”
Invited Keynote Talk, AI CON, March 2021.

10. Willcox, K. “Predictive Digital Twins: From physics-based modeling to scientific machine learn-
ing.” Invited Keynote Lecture, CAASE21, June 2021.

11. Willcox, K. “A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at
Scale,” Invited Plenary Lecture, European Control Conference, July 2021.

12. Willcox, K. “Predictive Digital Twins: From physics-based modeling to scientific machine learn-
ing.” Opening Conference, NSF Institute for Mathematical and Statistical Innovation, University
of Chicago, October 7–9, 2020.

13. Willcox, K. “Predictive Digital Twins and the Data-Driven Future of Aerospace Systems.” Invited
Keynote Talk, the 13th International Symposium on Non-Destructive Testing (NDT) in Aerospace,
NASA Langley Research Center, October 2021.

14. Willcox, K. “Engineering Design in the Age of Big Data and Big Compute.” Invited Plenary Talk,
NAFEMS World Congress, October 2021.

D.2. Other invited conference and workshop talks

15. Agarwal, D., Biros, G., “Novel Algorithms for 3D Deformable Capsules Simulations”, Minisympo-
sium on Recent Advances in Fast Algorithms and Discretization Techniques for Integral Equations,
SIAM Conference on Computational Science and Engineering, Virtual, March 2021

16. Biros, G., “Scalable algorithms for diffeomorphic image registration”, Workshop on “Inverse Prob-
lems and Optimization”, University College London, Virtual, May 6, 2021
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17. Biros G., “Inverse biophysical modeling and its application to neurooncology”, Frontiers in Applied
Mathematics and Computation, Harvard University, Virtual, April 2021

18. Chen, C., Biros, G., “A Fast Solver for Integral Equations using Domain Decomposition”, Min-
isymposium on Fast Kernel Methods for Integral Equations, SIAM Conference on Computational
Science and Engineering, Virtual, March 2021

19. Burkovska, O. “An optimization-based approach to parameter learning for truncated fractional
models.” Invited Talk, Mechanistic Machine Learning and Digital Twins for Computational Sci-
ence, Engineering & Technology Conference, September, 2021.

20. Burkovska, O. “Identifying the parameters in nonlocal models related to the integral fractional
Laplacian.” Invited Talk, IFIP TC7 Conference on System Modelling and Optimization, Septem-
ber, 2021.

21. Burkovska, O. “Nonlocal phase-field models for describing sharp interface dynamic.” Invited Talk,
16th US National Congress on Computational Mechanics, July, 2021.

22. Burkovska, O. “Phase-field models with nonlocal interactions in the context of solidification.”
Invited Talk, IX International Conference on Coupled Problems in Science and Engineering, June,
2021.

23. Burkovska, O. “Nonlocal phase-field models permitting sharp interfaces.” Invited Talk, SIAM
Conference on the Mathematical Aspects of Materials Science, May, 2021.

24. Burkovska, O. “Nonlocal phase-field models permitting sharp interfaces.” Invited Talk, 50th Bar-
rett Memorial Lectures, Approximation, Applications, and Analysis of Nonlinear Nonlocal Models,
University of Tennessee, May, 2021.

25. Burkovska, O. “An optimization-based approach to parameter learning for truncated fractional
models.” Invited Talk, SIAM Conference on Computational Science & Engineering, March, 2021.

26. Burkovska, O. “Nonlocal operators in phase-field models.” Invited Seminar Talk, University of
Nebraska-Lincoln, October, 2020.

27. Chen, P. “Stein Variational Reduced Basis Bayesian Inversion.” Invited Talk, SIAM Annual Meet-
ing, July, 2021.

28. Chen, P. “Fast and scalable computational methods for learning and optimization under uncer-
tainty.” Invited Talk, Xi’an Jiaotong University, May, 2021.

29. Chen, P. “Projected Variational Methods for High-dimensional Bayesian Inference.” Invited Talk,
Cornell University, April, 2021.

30. Chen, P. “Taylor Approximation for Chance Constrained Optimization.” Invited Talk, SIAM
Conference on Computational Science & Engineering, March, 2021.

31. Chen, P. “Taylor approximation for PDE and chance constrained optimization under uncertainty.”
Invited Talk, Banff Workshop on optimization under Uncertainty: Learning and Decision Making,
February, 2021.

32. Chen, P. “Break the curse of dimensionality of Bayesian inference by projected variational transport
methods, with application in COVID-19.” Invited Talk, University of California, Los Angeles,
September, 2020.
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33. DeWitt, S. “Preparing for Exascale Phase-Field Simulation: Phase-Field Modeling in ExaAM and
AEOLUS”, Invited Talk, CHiMaD Phase-Field Methods Workshop XI, May 2021.

34. Geelen, R., Willcox, K. “Localized non-intrusive reduced-order modeling in the operator inference
framework.” 16th U.S. National Congress on Computational Mechanics (USNCCM16), July 2021.

35. Geelen, R., Willcox, K. “Localized non-intrusive reduced-order modeling in the operator infer-
ence framework.” Mechanistic Machine Learning and Digital Twins for Computational Science,
Engineering & Technology (MMLDT-CSET 2021), September 2021.

36. Ghafouri, A., Biros, G.,, “Anisotropic Tau-Protein Spreading Model in Alzheimer’s Disease from
PET-MRI”, Minisumposium on Biological Model Development and Data in Parallel, SIAM Con-
ference on Computational Science and Engineering, Virtual, March 2021

37. Ghattas, O., Derivative-informed projected neural networks for high-dimensional parametric maps
governed by PDEs, RICAM Hybrid Prequel Workshop on Tomography Across the Scales, Johann
Radon Institute (RICAM), Austrian Academy of Sciences, Linz, Austria, October 15, 2021.

38. Ghattas, O., Integration of large-scale data and complex models via Bayesian inversion and HPC,
Building Community @ UT for a New Era in Astrophysics, virtual, May 24–26, 2021.

39. Ghattas, O., Parsimonious structure-exploiting deep neural network surrogates for parameter-to-
output maps governed by PDEs, ARPA-E DIFFERENTIATE Program Workshop on Generative
Models, online, April 15, 2021.

40. Ghattas, O., Scalable Structure-Exploiting Approaches to Optimal Experimental Design, SIAM
Conference on Computational Science & Engineering, online, March 1–5, 2021.

41. Ghattas, O., Parsimonious structure-exploiting deep neural network surrogates for Bayesian inverse
problems, Robert J. Melosh Medal Competition for Best Student Paper in Finite Elements, Duke
University, Durham, NC, October 22–23, 2020. (Online)

42. Ghattas, O., Parsimonious structure-exploiting deep neural network surrogates for Bayesian inverse
problems, Society for Engineering Science, 2020 Virtual Technical Meeting, September 29–October
1, 2020.

43. Ghattas, O., Parsimonious structure-exploiting deep neural network surrogates for Bayesian in-
verse problems, Colloquium, Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany, July 1, 2021.

44. Ghattas, O., Parsimonious structure-exploiting deep neural network surrogates for Bayesian inverse
problems, GFDL Seminar Series, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, May 6,
2021.

45. Ghattas, O., Parsimonious structure-exploiting deep neural network surrogates for Bayesian inverse
problems, MOX Colloquia, Modeling and Scientific Computing Lab, Department of Mathematics,
Politecnico di Milano, Italy, November 12, 2020.

46. Ghattas, O., Large-scale PDE-constrained stochastic optimization, Operations Research & Indus-
trial Engineering Seminar Series, The University of Texas at Austin, October 16, 2020.

47. Himthani, N., Biros, G., “Mass Effect Quantification through Image Registration”, Minisympo-
sium on Computational Modeling of Uncertainty in Biomedical Simulations, SIAM Conference on
Computational Science and Engineering, Virtual, March 2021

27



48. Khodabakhshi, P., Gunzburger, M., Willcox, K., Multifidelity methods for uncertainty quantifi-
cation of nonlocal diffusion model, 16th U.S. National Congress on Computational Mechanics
(USNCCM16), July 2021.

49. Khodabakhshi, P., Willcox, K., Data-driven reduced order modeling for solidification processes in
additive manufacturing, SIAM Conference on Computational Science and Engineering (CSE21),
March 2021.

50. Khodabakhshi, P., Willcox, K., Structure-exploiting nonlinear model reduction with application
to solidification of metals, 14th Word Congress in Computational Mechanics (WCCM), January
2021.

51. Marzouk, Y., NASA Jet Propulsion Laboratory. Pasadena, CA (virtual). October 2020.

52. Marzouk, Y. Dartmouth College, Department of Mathematics, Sea Ice Modeling and Data As-
similation seminar. Hanover, NH (virtual). October 2020.

53. Marzouk, Y., ExxonMobil, Applied Geophysics Research Seminar. Spring, TX (virtual). November
2020.

54. Marzouk, Y., MIT Technology Review, Future Compute 2021. Featured speaker. Cambridge, MA
(virtual). February 2021.

55. Marzouk, Y., “Workshop on Optimization under Uncertainty: Learning and Decision Making.”
Banff International Research Station. Banff, Canada (virtual). February 2021.

56. Marzouk, Y., Courant Institute for Mathematical Sciences (NYU), Numerical Analysis and Scien-
tific Computing Seminar. New York, NY (virtual). February 2021.

57. Marzouk, Y., SIAM Conference on Computational Science and Engineering. Fort Worth, TX
(virtual). March 2021.

58. Marzouk, Y., University of Massachusetts, Amherst; Applied Mathematics and Computation Sem-
inar. Amherst, MA (virtual). March 2021.

59. Marzouk, Y., University of Iowa, Numerical Analysis Seminar. Iowa City, IA (virtual). March
2021.

60. Marzouk, Y., Yale University, Applied Mathematics Seminar. New Haven, CT (virtual). April
2021.

61. Marzouk, Y., SIAM Conference on Mathematical and Computational Issues in the Geosciences.
Milan, Italy (virtual). June 2021.

62. Marzouk, Y., Pacific Earthquake Engineering Research Center (PEER) International Forum.
Berkeley, CA (virtual). June 2021.

63. Marzouk, Y., SIAM Annual Meeting (AN21). Invited minisymposium (virtual). July 2021.

64. Marzouk, Y., Bernoulli-IMS 10th World Congress on Probability and Statistics. Invited session
speaker. Seoul, Korea. July 2021.

65. Marzouk, Y., Bath-ICMS workshop on “Analytical and Geometric Approaches to Machine Learn-
ing.” Invited speaker. Bath, United Kingdon (virtual). July 2021.
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66. Marzouk, Y., RWTH Aachen University, Chair of Mathematics for Uncertainty Quantification,
Seminar. Aachen, Germany (virtual). July 2021.

67. Marzouk, Y., University of Potsdam. SFB 1294 kickoff meeeting (keynote). Potsdam, Germany
(virtual). September 2021.

68. Marzouk, Y., CERN, Seminar on Machine Learning for Simulation. Geneva, Switzerland (virtual).
September 2021.

69. Marzouk, Y., Centre International de Rencontres Mathematiques (CIRM) workshop, “On future
synergies for stochastic and learning algorithms.” Marseille, France (virtual). September 2021.

70. Marzouk, Y., George Washington University, Center for Mathematics and Artificial Intelligence
(CMAI) Colloquium (virtual). October 2021.

71. McBane, S., “Accelerated topology optimization of lattice structures using component-wise re-
duced order modeling.” SIAM Conference on Computational Science and Engineering, invited
minisymposium presentation, March 2021.

72. McQuarrie, S., Huang, C., Willcox, K. “Data-driven reduced-order models via regularized operator
inference.” SIAM Conference on Computational Science and Engineering 2021 (CSE21), March
2021.

73. McQuarrie, S., Huang, C., Willcox, K. “Data-driven reduced-order models via regularized oper-
ator inference for a single-injector combustion process.” SIAM Conference on Control and Its
Applications 2021 (CT21), July 2021.

74. McQuarrie, S., Khodabakhshi, P., Willcox, K. “Non-intrusive parametric reduced-order modeling
via operator inference.” 16th U.S. National Congress on Computational Mechanics (USNCCM16),
28 July 2021

75. Qian, X. “Bayesian Active Learning by Objective-Oriented Uncertainty Quantification”, Invited
Talk, International Workshop on Signal and Information Intelligent Learning & Processing (SIILP),
July 2021.

76. Qin, Y., Biros, G., “Multiscale Modeling in Additive Manufacturing and Reduced-Order Mod-
els”, Minisymposium on Multiscale Simulations for Manufacturing and Materials Synthesis, SIAM
Conference on Computational Science and Engineering, Virtual, March 2021

77. Willcox, K. “Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
Invited Talk, University of Pennsylvania, October 2020.

78. Subramanian, S., Biros, G., “An Inverse Solver with Sparse Localization for Tumor Growth Mod-
els”, Minisymposium on Computational Methods for Inverse Problems, SIAM Conference on Com-
putational Science and Engineering, Virtual, March 2021

79. Webster, C., “Sparsity-enforced regularizations for optimal learning of high-dimensional systems
from random sampling,” Babuska Forum Lecture, Oden Institute for Engineering and Computa-
tional Sciences, The University of Texas at Austin, April 2021.

80. Webster, C., “An Adaptive Stochastic Gradient-Free Approach for High-Dimensional Blackbox
Optimization,” Workshop on Scientific Computing and Applications, The University of Las Vegas,
Las Vegas, NV, July 2021.
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81. Webster, C., “An Adaptive Stochastic Gradient-Free Approach for High-Dimensional Blackbox
Optimization,” The Fields Instittue, The University of Toronto, Toronto, ON, August 2021.

82. Webster, C., “Robust learning with implicit residual networks,” Safety and Security of Deep Learn-
ing (Virtual), Institute for Computational and Experimental Research in Mathematics (ICERM),
Brown University, Providence, RI, 2021.

83. Willcox, K. ”Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
Invited Talk, University of Pennsylvania, October 2020.

84. Willcox, K. Invited Panelist, Mathematical Foundations Panel. Sandia National Laboratories
Trusted AI Roundtable, October 2020.

85. Willcox, K. “Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
Invited Talk, Texas A&M University, October 2020.

86. Willcox, K. “Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
Invited Talk at Workshop on Physics-guided AI to Accelerate Scientific Discovery, AAAI Fall
Symposium, November 2020.

87. Willcox, K. “Digital Twins and Their Applications.” Workshop on Digital Twins in Production
Engineering and High Performance Computing Education, Invited Plenary Talk, U. Tennessee,
December 2020.

88. Willcox, K. “The future needs Computational Science and Engineering.” Invited Talk at Tech-
nology Convergence for a Smarter, More Connected World: Market Trends, CIMdata Community
Webinar, December 2020.

89. Willcox, K. “Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
ECE Distinguished Lecture at George Washington University, December 2020.

90. Willcox, K. “Research and Education at the Oden Institute for Computational Engineering and
Science.” Invited Talk, MD Anderson Cancer Center, December 2020.

91. Willcox, K. “Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
Invited Talk at Workshop on Machine Learning for Engineering Modeling, Simulation, and Design.
Neural Information Processing Systems (NeurIPS), December 2020.

92. Willcox, K. “Big Data, Big Models and Digital Twins: Computational Perspectives from Aerospace
Engineering” Invited Keynote Talk, DOE/NCI Workshop on Accelerating Precision Radiation
Oncology through Advanced Computing and Artificial Intelligence, January 2021.

93. Willcox, K. “Predictive Digital Twins for engineering systems: From physics-based modeling to
scientific machine learning.” Invited Talk, Christ’s College Engineering Society, University of
Cambridge, March 2021.

94. Willcox, K. “Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
Invited Talk, Sayas Numerics Seminar, April 2021.

95. Willcox, K. “Predictive Digital Twins and the Data-driven Future of Computational Science.”
Invited Talk, Indian Institute of Science, April 2021.
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96. Willcox, K. “Predictive Digital Twins and the Data-driven Future of Computational Science.”
Invited Talk, College of Engineering Distinguished Lecture Series, New Mexico State University,
April 2021.

97. Willcox, K., “Operator Inference: Bridging Model Reduction and Scientific Machine Learning.”
Invited Talk, Computational Mathematics and Applications Seminar, Oxford University, May 2021.

98. Willcox, K. “Transformational Technology Approaches for Dynamic Statistical, Data-Driven, and
Mechanistic Modeling,” Keynote Lecture, NCI Joint VIRTUAL Project Teams Meeting: Cancer
Biology Machine Learning/Mechanistic Modeling and Cancer Patient Digital Twin, July 2021.

99. Willcox, K. “Digital Twins for Complex Engineering Systems: From Physics Based Models to Sci-
entific Machine Learning,” ISA/SPE Digital Transformation Virtual Conference (Invited), August
2021.

100. Willcox, K. “A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at
Scale,” RTRC Fellows Lecture (Invited), Raytheon Technologies Corporation, August 2021.

101. Willcox, K. “Predictive Digital Twins: Mathematical Foundations and Application to Structural
Health Monitoring,” Keynote Lecture, MaP Scientific Symposium, ETH Zurich, August 2021.

102. Willcox, K. “Predictive Digital Twins: Perspectives from Aerospace Engineering.” Invited Talk,
Data Science Work Group, MD Anderson Cancer Center, August 2021.

103. Willcox, K. “Predictive Digital Twins: From physics-based modeling to scientific machine learn-
ing.” Invited Keynote Talk, Computing in Engineering Forum, University of Wisconsin-Madison,
September 2021.

104. Willcox, K. “Research needs and future directions: Scaling digital twins from the artisanal to
the industrial.” Invited Plenary Talk, Workshop on Aviation Digital Twins: Applications and
Opportunities, the MITRE Corporation, October 2021.

105. Willcox, K. “Mathematical and Computational Foundations for Enabling Predictive Digital Twins
at Scale.” Invited Talk, Santa Fe Institute, October 2021.

106. Willcox, K. “Predictive Digital Twins.” Invited Talk, MD Anderson Cancer Center Data Science
and Modeling Forum, October 2021.

107. Zhao, G., Dougherty, E., Yoon, B.J., Alexander F., and Qian, X., “Bayesian Active Learning
by Soft Mean Objective Cost of Uncertainty”, the 24th International Conference on Artificial
Intelligence and Statistics (AISTATS), April 2021.

108. Zhao, G., Dougherty, E., Yoon, B.J., Alexander F., and Qian, X., “Uncertainty-aware Active Learn-
ing for Optimal Bayesian Classifier,” the 9th International Conference on Learning Representations
(ICLR), May 2021.

E. Other significant dissemination

Besides the traditional avenues for dissemination of research (publications and presentations), the AE-
OLUS team has been actively sharing the results of its research with the broader scientific community
via other mechanisms, including public software releases, teaching of summer schools and short courses,
development of new semester-long courses, co-organization of topical workshops and conference, and
training of Ph.D. students and postdocs who move on to academic, laboratory, and industry positions.
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E.1. Software

• GOFMM (Geometry Oblivious Fast Multipole method) is an algorithm for compressing kernel
matrices in arbitrary dimensions. GOFMM can also compress arbitrary symmetric positive defi-
nite matrices. GOFMM supports shared and distributed memory parallelism. To our knowledge
GOFMM is the only open source software with such capabilities.
https://github.com/ChenhanYu/hmlp

• hIPPYlib: Inverse Problem PYthon library. hIPPYlib implements state-of-the-art scalable adjoint-
based algorithms for PDE-based deterministic and Bayesian inverse problems. It builds on FEniCS
for the discretization of the PDE and on PETSc for scalable and efficient linear algebra operations
and solvers.
https://hippylib.github.io/

• KNN-DBSCAN is a shared and distributed memory parallel library for linkage-based point cluster-
ing in high-dimensions. Unlike the original DBSCAN which uses range search nearest neighbors,
KNN-DBSCAN uses approximate k-nearest neighbors and results in better scalability.
https://github.com/ut-padas/knndbscan

• Matlab code for robust filtering and OED with stochastic differential equations (SDEs):
https://github.com/QianLab/SDE-MOCU

• MIT TransportMaps library:
http://transportmaps.mit.edu

• MUQ: MIT Uncertainty Quantification Library:
http://muq.mit.edu

• OK Newton: Numerical implementation of a fast, globally convergent modified Newton method
for the direct minimization of the Ohta-Kawasaki energy.
https://lcao11@bitbucket.org/lcao11/ok_newton/src/master/

• Operator Inference model reduction package with tutorial examples. Released June 2020.
https://github.com/Willcox-Research-Group/rom-operator-inference-Python3

• Python code for active learning with Soft MOCU based acquisition function:
https://github.com/QianLab/Soft_MOCU

• Python code for active learning with Weighted MOCU based acquisition function:
https://github.com/QianLab/WMOCU_AL

• Python code for Bayesian supervised domain adaptation:
https://github.com/SHBLK/BSDA

• Python code for Kuramoto model OED (optimal experimental design) simulations in GitHub:
https://github.com/yhong2/Sync

E.2. Short courses/summer schools taught and long courses developed

• Qian, X., Short courses on introductory machine learning in the iDiscovery Workshop on Data
Science Foundations and Computational Practice, Texas A&M Institute of Data Science, May
2021.
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E.3. Workshops and conferences co-organized

Team members served as co-chairs or co-organizers of the following workshops and conferences on
AEOLUS-related themes.

• Alexander and Ghattas are on the Program Committee for the New York Scientific Data Summit
2021, October 26–29, 2021. https://www.bnl.gov/nysds21/

• Ghattas and Marzouk are co-organizing the Workshop on Mathematical Foundations of Data
Assimilation and Inverse Problems at the Foundations of Computational Mathematics (FoCM’23)
Conference in Whistler, Canada, June 12-21, 2023.

• Marzouk was co-chair of the SIAM Conference on Mathematical and Computational Issues in the
Geosciences (GS21), held virtually in June 2021.

• Webster was a co-organizer of the Workshop on Safety and Security of Deep Learning, held
virtually at the Institute for Computational and Experimental Research in Mathematics (ICERM),
Brown University, Providence, RI, April 2021

• Willcox is a co-chair of the SIAM Conference on Mathematics for Data Science (MDS22), to be
held September 2022.

• Willcox serves on the Organizing Committee, International Congress on Industrial and Applied
Mathematics (ICIAM) 2023.

E.4. Other notable professional activities

• AEOLUS team members organized multiple minisymposia at the 2021 SIAM Conference on Com-
putational Science & Engineering; the 16th U.S. National Congress on Computational Mechanics;
the 2021 SIAM Conference on Mathematical and Computational Issues in the Geosciences; the
2021 IFIP TC7 Conference on System Modelling and Optimization; 14th World Congress in Com-
putational Mechanics; and the upcoming 2022 SIAM Conference on Uncertainty Quantification,
among others.

• Biros is Member of the ACM/IEEE SC21 Test of Time Award Committee

• Biros serves as Program co-Chair, SIAM Parallel Processing for Scientific Computing 2020

• Biros serves on the ACM Gordon Bell Prize selection committee (6 members) 2018–

• Ghattas serves on the Editorial Board, Foundations of Data Science, 2019–

• Ghattas serves on the Advisory Board, Data Centric Engineering, 2019–

• Ghattas serves on the External Advisory Board of CLDERA (CLimate impact: Determining Etiol-
ogy thRough pAthways), Grand Challenge LDRD, Sandia National Laboratories, 2021–2025

• Ghattas serves on the External Scientific Committee of the Energy and Environment French
Excellence Initiative led by the University of Pau, National Institute for Agronomy (INRA), and
Institute for Research in Computer Science and Automation (INRIA) (2017–)

• Ghattas serves on the Scientific Advisory Board (SAB) of PalMod (German Paleo Climate Mod-
eling Initiative, Germany (2016–2022)

• Ghattas served as Chair, SIAM Activity Group on Uncertainty Quantification, 2019–2020
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• Ghattas serves on the Scientific Advisory Board for the Max Planck Institute for Dynamics of
Complex Technical Systems, Magdeburg, Germany, 2020–2026.

• Marzouk serves on the Advisory Board, UK EPSRC Computational Statistical Inference for Engi-
neering and Security (CoSInES) program

• Marzouk serves on the Advisory Board, UK EPSRC ICONIC (Inference, Computation and Numerics
for Insights into Cities) program

• Marzouk served on the external advisory board of the Sandia National Laboratories SECURE
Grand Challenge, 2019–2021.

• Marzouk serves on the editorial boards of the SIAM/ASA Journal on Uncertainty Quantification
(2015–present), SIAM Journal on Scientific Computing (2017–present), Data-Centric Engineer-
ing (2019–present), Foundations of Data Science (2019–present), and International Journal for
Uncertainty Quantification (2010–present).

• Marzouk serves on the organizing committee of the DOE Workshop on Data Reduction for Science
(2020–present).

• Oden was elected to the 2020 Department of Aerospace Engineering and Engineering Mechanics
(ASE/EM) Academy of Distinguished Alumni in the Cockrell School of Engineering at The Uni-
versity of Texas at Austin, Austin, Texas, April 17, 2020. The ASE/EM Academy of Distinguished
Alumni was established to honor graduates of the aerospace, computational and engineering me-
chanics programs who have led distinguished careers in industry, government or academia, and to
recognize their outstanding accomplishments.

• Webster serves as Editor-in-Chief, Numerical Methods for Partial Differential Equations; 2020 –
present.

• Webster serves as Editor, Numerische Mathematik; 2019–present

• Webster serves as Editor, Results in Applied Mathematics; 2019–present

• Webster serves as President, SIAM Southeastern Atlantic Section; 2019–2021

• Willcox serves as Co-Chair of the NSF Advisory Committee for Cyberinfrastructure (ACCI), 2020–
2022

• Willcox served as Chair of the AIAA Multidisciplinary Design Optimization Technical Committee,
2019–2021

• Willcox serves on the National Academies Board on Mathematical Sciences and Analytics (BMSA),
2016 – present

• Willcox serves on the Board of Trustees of the American Institute of Aeronautics and Astronautics
(AIAA), 2020–2023

• Willcox serves on the Board of Advisors of the new Institute for Mathematical and Statistical
Innovation, 2020–

• Willcox serves as inaugural Program Director, SIAM Activity Group on Data Science, 2020–2021
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