MUQ
MIT Uncertainty Quantification Library
MUQ (MIT Uncertainty Quantification) is a C++/Python library for uncertainty quantification—in particular, for connecting complex models with UQ tools in a way that exposes model structure to the algorithms. MUQ is designed both for use by application scientists and engineers and as a platform for algorithm developers. It currently includes a wide variety of UQ capabilities: advanced Markov chain Monte Carlo algorithms for inference; approximation methods for computationally intensive likelihoods and forward models; adaptive methods (e.g., sparse polynomial approximations) for uncertainty propagation, global sensitivity analysis, and surrogate construction; and many others. MUQ optimizes UQ workflows through the use of directed acyclic graphs for dependency management. The underlying dependency graph enables structure-exploiting algorithms to cache and share information in a relatively transparent fashion. MUQ also operates seamlessly with packages such as FEniCS, libMesh, SUNDIALS, and NLopt.
MUQ